UNIT-IV	CHAPTER	
VECTORS		
& THREE-		
DIMENSIONAL GEOMETRY		VECTORS

Syllabus

Vectors and Scalars, Magnitude and direction of a vector. Direction cosines and direction ratios of a vector, "types of vectors" equal, unit, zero, parallel and collinear vectors, position vector of a "point, negative of a vector", components of a vector, addition of vectors (properties of addition, laws of addition), Multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical interpretation, properties and application of Scalar (dot) product of vectors, Vector (cross) product of vectors, scalar triple product of vectors.

Chapter Analysis

TOPIC	2016		2017		2018	
Топс	Delhi	OD	Delhi	OD	Delhi/OD	
Properties	2 Q. (1 Mark)		_	_	_	
Angle between vectors	No.	-	1 Q. (4 Marks)	_	2 Q. (1 Mark) 2 Q. (2 Marks)	
Dot Product	X -	_	_	-	-	
Cross product	_	2 Q. (1 Mark)	-	-	1 Q. (4 Marks)	
Area of triangle	_	1 Q. (4 Marks)	-	1 Q. (4 Marks)		
Coplanarity	1 Q. (4 Marks)	_	1 Q. (4 Marks)	1 Q. (4 Marks)	-	

Revision Notes

TOPIC - 1 Basic Algebra of Vectors	Page 366
TOPIC - 2 Dot Product of Vectors	Page 378
TOPIC - 3 Cross Product	Page 389
TOPIC - 4 Scalar Triple Product	Page 403

🕀 www.studentbro.in

1. Vector : Basic Introduction :

- A quantity having magnitude as well as the direction is called a vector. It is denoted as \vec{AB} or \vec{a} . Its magnitude (or modulus) is $|\vec{AB}|$ or $|\vec{a}|$ otherwise, simply *AB* or *a*.
- Vectors are denoted by symbols such as \vec{a} . [Pictorial representation of vector]

2. Initial and Terminal Points :

The initial and terminal points means that point from which the vector originates and terminates respectively.

CLICK HERE

≫

3. Position Vector :

The position vector of a point say P(x, y, z) is $\overrightarrow{OP} = \overrightarrow{r} = x\widehat{i}$ \widehat{y} \widehat{k} and the magnitude is $r = \sqrt{x^2 + 2 + 2}$. The vector $\overrightarrow{OP} = \overrightarrow{r} = x\widehat{i}$ \widehat{y} \widehat{k} is said to be in its **component form**. Here *x*, *y*, *z* are called the scalar components or rectangular components of \overrightarrow{r} and *xi*, *yj*, *zk* are the vector components of \overrightarrow{r} along *x*, *y*, *z*-axis respectively.

- Also, $\overrightarrow{}$ = (Position Vector of *B*) (Position Vector of *A*). For example, let $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$. Then, $\overrightarrow{}$ = $(x_2i + y_2j + z_2k) - x_1i + y_2j + z_2k$.
- Here , and are the unit vectors along the axes *OX*, *OY* and *OZ* respectively (The discussion about unit vectors is given later under 'types of vectors').

4. Direction Ratios and Direction Cosines :

If r = xi + y + k, then coefficient of *i*, *j*, *k* in $\overrightarrow{i.e.}$, *x*, *y*, *z* are called the direction ratios (abbreviated as d.r.'s) of vector \overrightarrow{i} . These are denoted by *a*, *b*, *c* (*i.e.*, *a* = *x*, *b* = *y*, *c* = *z*; in a manner we can say that scalar components of vector \overrightarrow{i} and its d.r.'s both are the same).

Also, the coefficients of i, j, k in $\vec{}$ (which is the unit vector of $\vec{}$) *i.e.*, $\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}, \frac$

are called direction cosines (which is abbreviated as d.c.'s) of vector

- These direction cosines are denoted by *l*, *m*, *n* such that $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ and $l^2 + m^2 + n^2 = 1$ $\Rightarrow \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$
- It can be easily concluded that $\frac{x}{2} = l = \cos \alpha$, $\frac{y}{2} = m = \cos \beta$, $\frac{z}{2} = n = \cos \gamma$.

Therefore, $r = lri + mrj + nrk = r(\cos\alpha i + \cos\beta + \cos\gamma)$. [Here $r = | \overrightarrow{} |$].

5. Addition of vectors

- (a) **Triangular law**: If two adjacent sides (say sides *AB* and *BC*) of a triangle *ABC* are represented by $\vec{}$ and $\vec{}$ taken in same order, then the third side of the triangle taken in the reverse order gives the sum of vectors $\vec{}$ and $\vec{}$ *i.e.*, $\vec{AC} = \vec{AB} + \vec{BC} \Rightarrow \vec{AC} = +$.
- Also since $\vec{AC} = -\vec{CA} \Rightarrow \vec{AB} + \vec{BC} \quad \vec{CA} = 0$.
- And $\vec{AB} + \vec{BC} \vec{AC} = \Rightarrow \vec{AB} + \vec{BC} + \vec{CA} = \cdot$
- (b) **Parallelogram law :** If two vectors and are represented in magnitude and the direction by the two adjacent sides (say *AB* and *AD*) of a parallelogram *ABCD*, then their sum is given by that diagonal of

parallelogram which is co-initial with \vec{a} and \vec{d} *i.e.*, $\vec{OC} = \vec{OA} + \vec{OB}$.

6. Properties of Vector Addition

(a) Commutative property :

Consider $a = a_1i + a_2j + a_3k$ and $b = b_1i + b_2j + b_3k$ be any two given vectors,

then $a + b = (a_1 + b_1)i + (a_2 + b_2)j + (a_3 + b_3)k = b + a$.

- (b) Associative property: (a+b)+c=a++.
- (c) Additive identity property :
- (d) Additive inverse property : a + (-a) = 0 = () .

Note : Multiplication of a vector by a scalar

Let $\vec{}$ be any vector and k be any scalar. Then the product is defined as a vector whose magnitude is |k| times that of $\vec{}$ and the direction is (i) same as that of $\vec{}$ if k is positive, and (ii) opposite as that of $\vec{}$ if k is negative.

Get More Learning Materials Here : 📕

Know the Terms

Types of Vectors :

- (a) Zero or Null vector : It is that vector whose initial and terminal points are coincident. It is denoted by . Ofcourse its magnitude is 0 (zero).
- Any non-zero vector is called a **proper vector**.
- (b) Co-initial vectors : Those vectors (two or more) having the same starting point are called the co-initial vectors
- (c) Co-terminus vectors : Those vectors (two or more) having the same terminal point are called the coterminus vectors.
- (d) Negative of a vector: The vector which has the same magnitude as the $\vec{}$ but opposite direction. It is denoted

by – . Hence if,
$$i.e., AB = -BA, PQ = -QP$$
 etc.

(e) Unit vector : It is a vector with the unit magnitude. The unit vector in the direction of vector $\vec{}$ is given by

 $\hat{r} = \frac{r}{1}$ such that r = 1, so, if r = xi + y + k then its unit vector is :

$$r = \frac{x}{\sqrt{x^2 + y^2 + z^2}}\hat{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}}\hat{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}}\hat{k}.$$

- Unit vector perpendicular to the plane $\vec{}$ and $\vec{}$ is : $\pm \frac{x}{x}$.
- (f) Reciprocal of a vector : It is a vector which has the same direction as the vector $\vec{}$ but magnitude equal to the reciprocal of the magnitude of $\vec{-1}$. It is denoted as $\vec{-1}$ Hence $|\vec{r}| = \frac{1}{|\vec{r}|}$.
- (g) Equal vectors : Two vectors are said to be equal if they have the same magnitude as well as direction, regardless of the position of their initial points.

Thus $\vec{a} = \vec{b} \Leftrightarrow \begin{cases} |a| = |b| \\ \vec{a} \text{ and } \vec{b} \text{ have same direction} \end{cases}$

Also, if $a = b \Rightarrow a_1 i + a_2 j + a_3 k = b_1 i + b_2 j + a_3 k \Rightarrow a_1 = b_1, a_2 = b_2, = .$

- (h) Collinear or Parallel vector: Two vectors and are collinear or parallel if there exists a non-zero scalar λ such that
- It is important to note that the respective coefficients of i, j, k in $\vec{}$ and $\vec{}$ are proportional provided they are parallel or collinear to each other.
- The d.r's of parallel vectors are same (or are in proportion).
- The vectors \vec{a} and \vec{a} will have same or opposite direction as λ is positive or negative respectively.
- The vectors and are collinear if
- Free vectors : The vectors which can undergo parallel displacement without changing its magnitude and (i) direction are called free vectors.

Know the Formulae

The position vector of a point say P dividing a line segment joining the points A and B whose position vectors are

CLICK HERE

🕀 www.studentbro.in

and $\vec{}$ respectively, in the ratio *m* : *n*.

(a) Internally, $\vec{OP} = \frac{mb + na}{mb + na}$

(b) Externally, $\vec{OP} = \frac{mb - na}{mb - na}$

Also if point *P* is the mid-point of line segment *AB*, then $\overrightarrow{OP} = -+$.

Objective Type Questions

Q.1. Area of a rectangle having vertices A, B, C and

D with position vectors

– and –	respectively is
---------	-----------------

(a)
$$\frac{1}{2}$$
 (b) 1

Ans. Correct option : (c) Explanation :

The position vectors of vertices A, B, C and D of rectangle ABCD are given as :

$$OA = -\hat{i} + -\hat{j} + \hat{k} , OB = \hat{i} + \frac{1}{\hat{j}} + 4\hat{k}$$
$$= \hat{i} - \frac{1}{\hat{j}} + 4\hat{k}, OD = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$

The adjacent sides and of the given rectangle are given as :

$$AB = (1+1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{} = 2\hat{}$$

$$\overline{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{} + (4-4)\hat{} = -\hat{j}$$

$$\overline{AB} \quad \overline{BC} = 2 \quad 0 \quad 0$$

$$0 \quad -1 \quad 0$$

$$= (-) = -$$

$$|\overline{AB} \quad \overline{BC}| = 2$$

Now, it is known that the area of parallelogram whose adjacent sides are - and - is \times

So that, the area of the give AB BC sq. units.

Q. 2. In triangle ABC (Figure), which of the following is not true :

[NCERT Ex.]

Ans. Correct option : (c) **Explanation** :

Get More Learning Materials Here :

Applying the triangle law of addition in the above triangle, we have

:. The equation given in alternative (a) is true. AB + BC = AC

... The equation given in alternative (b) is true. From equation (ii), we have

The equation given in alternative (d) is true. Now, consider the equation given in alternative (c):

For equa AC

which is not true. So that, the equation given in alternative (c) is incorrect.

Q. 3. If is a non-zero vector of magnitude 'a' and λ a

non-zero scalar, then is unit vector if (a) $\lambda = 1$ (b) $\lambda = -1$ (d) $a = 1/|\lambda|$ [NCERT Ex.] (c) $a = |\lambda|$

Ans. Correct option : (d) Explanation :

AB + BC - CA

 $\Rightarrow AC + AC =$

Vector is a unit vector if $|\lambda a| = 1$. Now. $|\lambda a| = 1$ λa 1

$$\vec{a} \quad \begin{array}{c} 1 \\ \lambda \end{array} \qquad \begin{bmatrix} \lambda \neq 0 \end{bmatrix}$$
$$\begin{array}{c} 1 \\ \lambda \end{array}$$
$$\begin{array}{c} 1 \\ \lambda \end{array} \qquad \begin{bmatrix} \neg = a \end{array}$$

is a unit vector if $= \frac{1}{\lambda}$. So that, vector

- Q. 4. If and are two collinear vectors, then which of the following are incorrect :
 - , for some scalar λ (a)

(b)

CLICK HERE

- (c) the respective components of and are not proportional
- (d) both the vectors have same direction, but and different magnitudes [NCERT Ex.]

Ans. Correct option : (d)

🕀 www.studentbro.in

...(i)

(1 mark each)

Explanation :

If and are two collinear vectors, then they are parallel. Therefore, we have

(For some scalar λ)

If $a = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $b = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ then,

$$b_{1}i \quad b_{2}j + b_{3}k = \lambda \quad a_{1}i + a_{2}j + a_{3}k$$

$$b_{1}\hat{i} \quad b_{2}\hat{j} + b_{3}\hat{k} = (\lambda a_{1})\hat{i} + (\lambda a)\hat{j} + ()\hat{j} + ()\hat{j} + (\lambda a_{1})\hat{j} + ()\hat{j} + (\lambda a_{1})\hat{j} + ()\hat{j} + (\lambda a_{1})\hat{j} + ()\hat{j} + ()$$

So that, the respective components of and are proportional. However, vectors and can have different directions. Hence, the statement given in option (d) is incorrect.

Q. 5. The vector in the direction of the vector i - j + k

that has magnitude 9 is

- (b) $\frac{\hat{i}-\hat{j}+\hat{k}}{\hat{k}}$ (a) i - j + k
- (c) 3i-2j+2k(d) 9i-2j+2k

[NCERT Exemp.

1/2

Ans. Correct option : (c) Explanation : Let $a = \hat{i} - \hat{i} + \hat{i}$

Any vector in the direction of a vector is given by
$$\vec{a}$$

$$=\frac{1}{\sqrt{1^2 + 2^2 + 2^2}} = ----$$

:. Vector in the direction of with magnitude 9.

$$=9 \frac{i-j+k}{\hat{i}-2\hat{j}+2\hat{k}}$$

Q. 6. The position vector of the point which divides the in the ratio 3 :1 is : and join of points

[NCERT Exemp.]

Ans. Correct option : (d) **Explanation** : Let the position vector of the *R* divides the join of and points 🔿

: Position vector,
$$R = \frac{3(a+b)+1}{2}$$

Since, the position vector of a point R dividing the line segments joining the points P and Q, whose position vectors are p and q in the ration m: n

internally, is given by $\frac{mq + np}{mq}$. $\cdot R = \frac{5a}{2}$

Very Short Answer Type Questions

Q. 1. Find a vector in the direction of $a \quad i - j$ that has magnitude 7 units. **R&U** [NCERT] [Delhi Set I, II, III Comptt. 2015]

Sol. Let

$$\sqrt{5}$$
 $\sqrt{5}$ $\xrightarrow{}$ a

then
$$= \frac{7}{\sqrt{5}} - \frac{14}{\sqrt{5}}$$
 $\frac{1}{2}$

[CBSE Marking Scheme 2015]

Q.2. Write a vector in the direction of the vector $\wedge \wedge \wedge$ $\therefore x + x + b + b + b = magnitude 9 units.$

$$i-2i+2k$$
 that has magnitude 9 unit

$$\bigcup_{i \to j} [\text{Delhi Set I Comptt. 2014}]$$

= $i - j + k$

The vector in the direction of $\vec{}$ with magnitude 9 is

$$\therefore \text{ Required vector} = 9 \times \frac{i - 2j + 2k}{\sqrt{1 + (-2) + 2^2}}$$

$$= 9 \times \frac{i - j + k}{2}$$
$$= 3i - 6j + 6k$$

Q. 3. Write a unit vector in the direction of the sum

of vectors $\overrightarrow{a} = 2\overrightarrow{i} + 2$ - 5 and $\overrightarrow{=} 2\overrightarrow{+} \overrightarrow{i} - 7$. R& [Delhi Set III, 2014]

Sol. Let
$$= 4i + 3j - 12k$$

$$r = \sqrt{16 + 9 + 144} \quad \sqrt{169} \quad 13 \quad \frac{1}{2}$$

So, unit vector

Sol. Let

$$= \frac{\overrightarrow{r}}{\overrightarrow{r}} = \frac{4\hat{i}+3\hat{j}-12\hat{k}}{\hat{i}+3\hat{j}-12\hat{k}}$$
$$= -\hat{i}+-\hat{j}--\hat{k} \qquad \frac{1}{2}$$

Q. 4. Find a vector in the direction of vector $2\hat{i}-3\hat{j}+6\hat{k}$ which has magnitude 21 units.

R& [Foreign Set I, II, III, 2014]

$$= 2\hat{i} - 3\hat{j} + 6\hat{k}$$

CLICK HERE Get More Learning Materials Here :

(1 mark each)

The vector in the direction of \neg with a magnitude 21 is 21 \times [^].

$$\therefore \qquad \text{Required vector} = 21 \times \frac{2i - 3j + 6k}{\sqrt{2} + (-3) + 6^2}$$
$$= 21 \times \frac{2i - 3j + 6k}{4}$$
$$= 6i - 9j + 18k \qquad 1$$

Q.5. If $\vec{a} = x\hat{i} + 2j - zk$ and $\vec{b} = 3\hat{i} - yj + k$ are two equal vectors, then write the value of x + y + z. **R&** [Delhi Set I, 2013]

 $\vec{x} = x\hat{i}\hat{i}\hat{z}\hat{k}$

Sol.

- = 3i yand
- are equal vectors
- So,
- $x\hat{i}$ $\hat{2}$ $k = 3\hat{i} \quad y$ or x = 3, y = -2, z = -1÷.
- x + y + z = 3 2 1 = 0.÷
- Q. 6. Write a unit vector in the direction of the sum of vectors :

$$\overrightarrow{a} = 2\overrightarrow{i} - +2$$
 and $\overrightarrow{b} - \overrightarrow{i} + j + 3k$

R&U [NCERT] [Delhi Set III, 2013]

Sol. Given,

and

Let,

$$= (2i - j + 2k) + -i + + 3$$

$$= \hat{+} 5^{\hat{-}}$$

$$| = \sqrt{() + ()} = \sqrt{26}$$

So, required unit vector

$$r = \frac{\overrightarrow{r}}{\overrightarrow{r}} = \frac{2}{\sqrt{26}}$$
$$= \frac{1}{\sqrt{26}} + \frac{5}{\sqrt{26}}$$
^{1/2}

Commonly Made Error

- Generally students commit errors in finding the unit vector as they don't get the result in required vector form.
- Q.7. Find a unit vector parallel to the sum of vectors $\hat{i}+\hat{j}+\hat{k}$ and $2\hat{i}-3\hat{j}+5\hat{k}$.

∪ [Delhi Set I Comptt. 2012]

Sol. Sum of given two vectors is given as

(*i* +

$$(i + j + k) + 2i - 3 + 5$$

= $(1 + 2)i + (1 - 3)j + 1 + 5k$
= $3i - 2j + 6 =$
A unit vector parallel to this vector

$$= \frac{3i-2j+6k}{|A|}$$

$$= \frac{3i-2j+6k}{\sqrt{3^2+(-2)^2+6^2}} = \frac{3i-2+6}{\sqrt{49}}$$

$$= \frac{3i-2j+6k}{\sqrt{49}}$$

Q. 8. Find a unit vector in the direction of

$$A = 3\hat{i} - 2^{+}$$

Sol. A unit vector in the direction of vector is given by

$$= \frac{A}{\overrightarrow{A}}$$

$$A = \sqrt{3 + (-2) + 6^2} = 7$$

$$= \frac{A}{|A|} = \frac{3i - 2j + 6k}{7}$$

A unit vector in the direction of

$$= \frac{3}{-i} - \frac{2}{-j} + \frac{6}{-k} \,. \qquad 1$$

 $a = \hat{i} - 2\hat{} + \hat{}$ Q.9. Find the sum of the vectors

$$\vec{b} = -2\hat{i} + 4\hat{} + 5\hat{}$$
 and $\vec{c} = \hat{i} - 6\hat{} - 6\hat{}$

U [NCERT] [Delhi Set I, 2012]

Sol.

Sol.

CLICK HERE

 $\frac{1}{2}$

 $\frac{1}{2}$

1/2

$$= (i-2j+k) + (-2i+4j+5k) + i - j - k$$
$$= (1-2+1) + (-2+4-6)j + (1+5-7)$$

Q.10. Find the sum of the vectors :

= 0 - 4 j - 1 = -4 j - .

$$a = i - 2j, b = 2i - 3j, c = 2i + k$$

[U] [Delhi Set II, 2012]

$$\xrightarrow{\rightarrow} \xrightarrow{\rightarrow} = (i - 2j) + (2i - 3j) + 2 + 3$$

$$= (1 + 2 + 2) + -2 \qquad k$$

$$= 5i - 5j + 3k. \qquad 1$$

(say) 1/2

Q. 11. Find the sum of the vectors :

$$\vec{a} = \hat{i} - 3\hat{k}, \vec{b} = 2\hat{j} - \hat{k}, \vec{c} = 2\hat{i} - 3\hat{k} + \hat{k}$$

Sol.

$$\vec{r} = (i - 3k) + (2j - k) + 2i - 3j + 2k$$
$$= (1 + 2)i + (2 - 3)j + -3 - 1 + 2k$$
$$= i - j - k.$$

R& [Delhi Set III, 2012]

Q. 12. Write the number of vectors of unit length perpendicular to both the vector $\vec{a} = 2\vec{i} + +2\vec{a}$

> and $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{k}$. [O.D. Set I, II, III 2016]

Sol. There are two such vectors of unit length perpendicular to both the given vectors and

and vectors are
$$\begin{array}{c} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \\ \xrightarrow{\times} \\ \xrightarrow{\times} \end{array}$$
.

Q. 13. Find the position vector of a point which divides the join of points with position vectors

>) and (2 externally in the ratio _ 2:1. R& [Delhi Set I, II, III 2016]

Sol. Required vector =
$$\frac{1(a-2b)-22 + \frac{1}{2}}{(a-2b)-4+2}$$
$$= \frac{(a-2b)-4+2}{(a-2b)-4+2}$$

PI Q. 14. The two vectors + and
$$\hat{i} - \hat{j} + \hat{k}$$
 represent
the two sides *AB* and *AC*, respectively of $\triangle ABC$.
Find the length of the median through *A*.

[Delhi Set I, II, III 2016] [Foreign 2015]

Sol.
$$\overrightarrow{AB} = \stackrel{\wedge}{+} \stackrel{\wedge}{}$$
 and $\overrightarrow{AC} = \stackrel{\wedge}{j-j+} \stackrel{\wedge}{k}$

Now ABEC represent a parallelogram with AE as the diagonal.

$$= AB + AC$$
 $\frac{1}{2}$

$$= (j+k) + 3i - j + 4k = i + k$$
Now,
 $AE = \sqrt{(3)^2 + (5)^2} = \sqrt{9 + 2} = \sqrt{4}$
.
 $\overrightarrow{AD} = \frac{1}{\sqrt{34}} \text{ units}$
 $\frac{1}{\sqrt{24}}$

Q. 15. Write the position vector of the point which divides the join of points with position vectors

Sol. Let

 $\frac{1}{2}$

÷.

The position vector of the point *R* dividing the join of *P* and *Q* internally in the ratio 2 : 1 is

$$\overrightarrow{} = \frac{2(2\overrightarrow{a}+3\overrightarrow{b})+3\overrightarrow{}-2}{4\overrightarrow{a}++\overrightarrow{}-2}$$

$$= \frac{4\overrightarrow{a}++\overrightarrow{}-2}{2}$$

$$= \frac{7}{2}+\frac{4}{2}$$

$$\frac{1}{2}$$

Q. 16. Write the value of \vec{p} for which the vectors $3\hat{i}+2\hat{j}+9\hat{k}$ and $\hat{i}-2p\hat{k}+3$ are parallel [O.D. Set I, 2014] vectors. $\frac{1}{a_2} = \frac{1}{b_2} = \frac{1}{c_2}$ Sol. [For parallel vectors] $\frac{3}{2} = \frac{2}{-2p} = \frac{9}{3}$ or $p = -\frac{1}{2}$ 1 or **Q.** 17. Find a vector $\stackrel{\rightarrow}{\longrightarrow}$ of magnitude $\sqrt{}$ making an angle of _____ with x-axis, _____ with y-axis and an acute angle θ with *z*-axis. [O.D. Set II 2014]

Sol. Let $\stackrel{\wedge}{}$ be the unit vector in the direction of vector $\stackrel{\rightarrow}{}$. Since vector $\stackrel{\rightarrow}{\longrightarrow}$ makes an angle of - with *x*-axis,

> $\frac{\pi}{2}$ with y-axis and an acute angle θ with z-axis therefore

$$\cos - \cos - \cos \theta = 1$$

 $[Using \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1]$

- or $\cos^2\theta = \frac{1}{2}$
- or $\cos \theta = \frac{1}{\sqrt{2}}$
- or $\theta = -$
- or

Therefore, $\overrightarrow{} = 5\sqrt{2}a$ $= 5\sqrt{2}\left(\cos\frac{1}{4}\hat{i} + \cos\frac{1}{2}\hat{j} + \cos\frac{1}{4}\hat{k}\right)$

- Q. 18. If a unit vector $\stackrel{\rightarrow}{}$ makes an angle with $\hat{i}, \frac{\pi}{-}$ with \hat{j} and an acute angle θ with \hat{j} , then find the value of θ . [Delhi Set I, 2013]
- **Sol.** We know that if a vector makes angle α , $\beta \& \gamma$ with , and respectively, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ Here, we have
 - $\alpha = -, \beta = -$ and $\gamma = \theta$, an acute angle

 $\therefore \cos^2 - + \cos^2 - + \cos^2 \theta = 1$ or $\frac{1}{2} + \frac{1}{2} + \cos^2 \theta = 1$

- or
- or

Q. 19. P and Q are two points with position vectors and respectively. Write the

 $\cos^2 \theta = \frac{1}{2}$

 $\cos \theta = \pm \frac{1}{2}$ or $\theta = - \cdot \frac{1}{2}$

position vector of a point R which divides the line segment PQ externally in the ratio 2 : 1.

F&U [NCERT] [O.D. Set I, 2013] Sol. Consider two points *P* and *Q* with position vectors

and OQ = +, then position vector of the point *R* dividing the join of *P* and *Q* externally in the ratio 2 : 1 is

$$=$$
 (a + b) - -2

1

S

CLICK HERE

Q. 20. L and M are two points with position vectors

and respectively. Write the position vectors of a point N which divides the line segment LM in the ratio 2:1 externally.

U [O.D. Set I, 2013]

Sol. If is the position vector of *N*, then by section formula

$$\vec{e} = \frac{2(\vec{a}+2\vec{b})-12\vec{e}-\vec{a}}{2\vec{a}+4\vec{b}-2\vec{e}+\vec{a}}$$
$$= \frac{2\vec{a}+4\vec{b}-2\vec{e}+\vec{a}}{2\vec{a}+4\vec{b}-2\vec{e}+\vec{a}}$$

1

Q.21. Find the scalar components of the vector with initial point A (2, 1) and terminal point B (– 5, 7). R& [O.D. Set I, II, III, 2012]

Sol. = Position vector of *B* – Position vector of *A*
=
$$(-5\hat{i} + 7\hat{j}) - +$$

= $(-5-2) + (7-1)j$
= $-7 + 6j$

.: The scalar components are (-7, 6). Q. 22. If a line has direction ratios 2, -1, -2, then what are its direction cosines ?

Sol. Here direction ratios of line are 2, -1, -2.

:. Direction cosines of line are
$$\frac{1}{\sqrt{2^2 + (-1)^2 + -2^2}}$$
,
 $\frac{1}{\sqrt{2^2 + (-1)^2 + (-2)^2}}$, $\frac{2}{\sqrt{2^2 + (-1)} + -2}$
i.e., $\frac{2}{\sqrt{2^2 + (-1)^2 + (-2)^2}}$.

[**Note** : If *a*, *b*, *c* are the direction ratios of a line, the direction cosines are $\frac{a}{\sqrt{2} - 2}, \frac{b}{\sqrt{2}}, \frac{b}{\sqrt{2}}$,

$$\frac{1}{\sqrt{a^2+b^2+c^2}}$$

Q. 23. If and denote the position vectors of points A and B respectively and C is a point on AB such that $AC = 2 \ CB$, then write the position vector of C. $\square \& U$ [Outside Delhi Set I, II, III comptt. 2016]

ol.
$$AC: CB = 2:1$$

Position vector of C
 $= \frac{\rightarrow}{+2}$

[CBSE Marking Scheme 2016]

1

🕀 www.studentbro.in

Q. 24. If $\overrightarrow{a} = 4\overrightarrow{i} - + \overrightarrow{a}$ and $\overrightarrow{b} = 2\overrightarrow{i} - 2 + .$, then find a

unit vector parallel to the vector

R&U [Outside Delhi Set I, II, III comptt. 2016]

Get More Learning Materials Here :

374]

Sol. $\overrightarrow{i}, \overrightarrow{b} = \overrightarrow{i}, \overrightarrow{b} = \overrightarrow{j}$

Sol.

On comparing the coefficients of $\hat{}$ and $\hat{}$, we get 2 = ka and -3 = 6k or $k = -\frac{1}{2}$

$$2 = -\frac{1}{2}a \text{ or } a = -4$$
 1

Answering Tips

have

 $\frac{1}{2}$

is $-\frac{1}{7}6\hat{i}-3\hat{j}+2\hat{k}^{1/2}$

R& [SQP 2017-18]

[CBSE Marking Scheme 2016]

[or any other correct answer] 1

[CBSE Marking Scheme, 2017-18]

• Clarify the concept of collinearity of two vectors.

Q. 28. If *A*, *B* and *C* are the vertices of *a* $\triangle ABC$, then what is the value of $\overrightarrow{}$ $\overrightarrow{}$ $\overrightarrow{}$? [U] [Delhi 2011C] Sol. Let $\triangle ABC$ be the given triangle.

= 6i - 3j + 2k

Q. 25. Give an example of vectors and such that

Unit vector parallel to

 $\vec{b} = \vec{b}$ but \vec{b} .

Sol. Given points are $\stackrel{\rightarrow}{}$ (1, 3, 0) and $\stackrel{\frown}{Q}$ (4, 5, 6). Here, $x_1 = 1, y_1 = 3, z_1 = 0$ and $x_2 = 4, y_2 = 5, z_2 = 6$

So, vector
$$PQ = (x_2 - x_1)^{\hat{j}} + (y_2 - y_1)^{\hat{j}} + (z_2 - z_1)^{\hat{j}}$$

= $(4 - 1)^{\hat{j}} + (5 - 3)^{\hat{j}} + (6 - 0)^{\hat{j}}$
= $\hat{i} + \hat{j} + \hat{j}$

:. Magnitude of given vector

$$|\overrightarrow{PQ}| = \sqrt{2 - 2 - 2} = \sqrt{+} + +$$

= $\sqrt{-} = 7$ units

Hence, the unit vector in the direction of \overrightarrow{PQ} is

$$\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \underbrace{3\hat{i}+2\hat{j}+6\hat{k}}_{|\overrightarrow{PQ}|} = \frac{3\hat{i}+2\hat{j}+6\hat{k}}{|\overrightarrow{PQ}|} = \underbrace{3\hat{i}+2\hat{j}+6\hat{k}}_{|\overrightarrow{PQ}|}$$

Q. 27. For what values of \vec{j} , the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and

$$a\dot{i}+$$
 $\dot{-}$ \dot{a} are collinear ?

R& [HOTS; Delhi 2011]

Sol. Let given vectors are
$$\overrightarrow{} = 2 - 3 \hat{j} + 4^{\circ}$$
 and $\overrightarrow{} = - 4 \hat{j} + 4^{\circ}$

vectors $\overrightarrow{}$ and $\overrightarrow{}$ are said to be collinear, if

$$\overrightarrow{}$$
 = $\overrightarrow{}$, where *k* is a scalar.

$$2^{-}3^{+}j_{+}4^{-} = k a^{+}j_{-}^{-}$$

Now, by triangle law of vector addition, we

[adding $\overrightarrow{}$ on both sides]

$$\rightarrow \rightarrow = ::$$

AC = -CA

Q. 29. Find the unit vector in the direction of the sum of vectors $2\hat{i}+3\hat{-}^{\hat{}}$ and $4\hat{i}-3\hat{j}-2\hat{k}$.

U [Foreign 2015]

- **Sol.** Try Yourself Q. 30. *A* and *B* are two points with position vectors
 - and respectively. Write the position vector of a point P which divides the line segment AB internally in the ratio 1:2.
- Sol. Try Yourself
- Q. 31. Write the position vector of mid-point of the vector joining points P(2, 3, 4) and Q(4, 1, -2).

Sol. Try Yourself

Q. 32. Write a unit vector in the direction of vector $\vec{j} = \hat{i} + \hat{j} + \hat{k}$ [All India 2011; Delhi 2009] Sol. Try Yourself

Q. 33. Find the magnitude of the vector $\stackrel{\rightarrow}{=} 3\hat{i}+2\hat{j}+6\hat{k}\cdot$ [[All India 2011C; Delhi 2008] Sol. Try Yourself

÷.

375

1

Get More Learning Materials Here :

CLICK HERE

🕀 www.studentbro.in

 $\frac{1}{2}$

 \rightarrow

1

1

then

1

 $\frac{1}{2}$

 $\frac{1}{2}$

1

(4 marks each)

$$=\frac{1}{\sqrt{49}}$$

$$=\frac{1}{\sqrt{49}}$$

$$=\frac{1}{\sqrt{49}}$$

$$=\frac{1}{\sqrt{49}}$$

$$=\frac{1}{\sqrt{9}}$$

$$=\frac{1}{\sqrt{9}$$

8, $\mu = -5$ $\frac{1}{2} + \frac{1}{2}$ [CBSE Marking Scheme, 2017]

Long Answer Type Questions-I

Q. 1. Find a vector of magnitude 5 units and parallel to the resultant of $\stackrel{\rightarrow}{=} 2^{\hat{}} + 3^{\hat{}} - \hat{k}$ and \rightarrow = \hat{i} 2 $\hat{}$. **R&** [Delhi 2011] ~ ^ ^ ~ ^ So

bl. Given,
$$= 2 \quad 3 \quad k \text{ and } = i \quad j \quad k$$

Now, resultant of above vectors =

$$= (2\hat{i}+3\hat{j}-\hat{})+\hat{}-2 + = 3i+j$$
Let
$$= \stackrel{\rightarrow}{\rightarrow}$$

$$\therefore \qquad \stackrel{\rightarrow}{=} 3i + j$$
Now unit vector $\hat{}$ in the direction of $\stackrel{\rightarrow}{=} is \frac{\stackrel{\rightarrow}{c}}{|c|}$

$$= \frac{3\hat{i} + \hat{j}}{\sqrt{() + ()}} \qquad 1$$

$$=\frac{3+}{\sqrt{10}}=\frac{3}{\sqrt{10}}+\frac{1}{\sqrt{10}}$$
 1

Get More Learning Materials Here :

or

🕀 www.studentbro.in

 $=\frac{1}{\sqrt{49}}$

Hence, vector of magnitude 5 units and parallel to resultant of $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$ is.

$$5\left(\frac{3}{\sqrt{10}} + \frac{1}{\sqrt{10}}\right)$$
 or $\frac{15}{\sqrt{10}} + \frac{5}{\sqrt{10}}$. 1

- Q. 2. Let $\overrightarrow{i} = (i+i)^{+} = (i+i)^{-} = (i-i)^{-} (i \vec{a} = (-2)^{\hat{a}} + \hat{k}$ Find a vector of magnitude 6 units,

 $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \ \vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$

which is parallel to the vector

U [All India 2010]

:..

Sol. Given.

 $\overrightarrow{}$ = 2° \overrightarrow{k} and . $= 2(\hat{i} + \hat{j} + \hat{k}) - (4\hat{i} - 2\hat{j} + 3\hat{k}) + 3\hat{i} + 2\hat{j} + \hat{k}$ $= 2\hat{i} + 2\hat{j} + 2\hat{k} - 4\hat{i} + 2\hat{j} - 3\hat{k} + 3\hat{i} - \hat{j} + \hat{k}$ $\overrightarrow{i} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ or

Now, a unit vector in the direction of vector

$$\overrightarrow{} \overrightarrow{} \overrightarrow{} \overrightarrow{} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}$$

$$= \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}$$

$$= \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}$$

$$1\frac{1}{2}$$

Hence, vector of magnitude 6 units parallel to the $\stackrel{\rightarrow}{=} 6 \left(\frac{1}{3} \stackrel{\wedge}{i} - \frac{2}{3} \stackrel{\wedge}{j} + \frac{2}{3} \stackrel{\wedge}{k} \right)$ vector $=2\hat{i}-4\hat{j}+4\hat{k}$ 1

Q. 3. Find the position vector of a point R, which divides the line joining two points P and Q whose position respectively, and vectors are externally in the ratio 1 : 2 Also, show that *P* is the mid-point, of line segment RQ.

Sol. Given,
$$\overrightarrow{P}$$
 = Position vector of P = and \overrightarrow{OQ} = Position vector of Q = Let \overrightarrow{PQ} in the position vector of point *R*, which divides *PQ* in the ratio 1 : 2 externally.

$$\frac{1}{Q(OQ)} \qquad P(OP) \qquad R$$

$$\xrightarrow{\rightarrow} = \frac{1(\vec{a} - 3\vec{b}) - 22 + 1}{1}$$

$$\begin{bmatrix} :: \overrightarrow{OR} = \frac{m(\overrightarrow{OQ}) - n(\overrightarrow{OP})}{m - n}. \text{Here}, m , n \end{bmatrix}$$
$$= \frac{\overrightarrow{a} - 3\overrightarrow{b} - 4 - 2}{-1}$$
$$= \frac{---}{-1}$$
Hence, $\overrightarrow{P} = \frac{1}{2}$

Now, we have to show that *P* is the mid-point of RQ,

i.e.
$$\xrightarrow{\rightarrow} = \frac{OR + OQ}{2}$$

= + , \overrightarrow{OO} = We have,

$$\therefore \qquad \frac{OR+OQ}{2} = \frac{(\overrightarrow{3}+5\overrightarrow{b})+ -3b}{2}$$

$$\underline{a+b} \underline{22a+b}$$

$$=$$
 $\xrightarrow{\rightarrow}$ $:: OP 2$ $\xrightarrow{\rightarrow}$

Hence, *P* is the mid-point of line segment RQ. $1\frac{1}{2}$

Q. 4. Show that the points $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$

and *C*(7 –) are collinear. [___] [Delhi 2009C]

Sol. Try yourself

Get More Learning Materials Here : **_**

TOPIC-2 Dot Product of Vectors

Revision Notes

1. Products of Two Vectors and Projection of Vectors

(a) Scalar Product or Dot Product : The dot product of two vectors \vec{a} and $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ where θ is the angle between and $0 \le \theta \le \pi$. Consider $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_1\hat{k}$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_2b_2$ **Projection of a vector** : $\vec{}$ on the other vector say $\vec{}$ is given as is given as $\left| \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{a} \cdot \overrightarrow{b}} \right|$ **Projection of a vector :** on the other vector say **Know the Properties (Dot Product)** • Properties/Observations of Dot product $\Rightarrow \hat{i} \cdot \hat{i} = |\hat{i}| |\hat{i}| \cos \theta = 1 \text{ or } \hat{i} \cdot \hat{i} = 1 = \hat{j} \cdot \hat{j} = k \cdot k$ $\hat{i} \cdot \hat{j} = \hat{i} \mid \hat{j} \mid \cos \frac{\pi}{2} = 0 \text{ or } \hat{i} \cdot \hat{j} = 0 = \hat{j} \cdot \hat{k} = k \cdot i$ $\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\cdot} \stackrel{\rightarrow}{\cdot} \in R, \text{ where } R \text{ is real number } i.e., \text{ any scalar.}$ $\stackrel{\rightarrow}{\rightarrow} = \stackrel{\rightarrow}{} (Commutative property of dot product).$ $If \theta = 0, then \stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\cdot} =$. Also $\overrightarrow{a}, \overrightarrow{a}$ as θ in this case is 0. Moreover if $\theta = \pi$, then $\overrightarrow{} =$ **c** \overrightarrow{a} $\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}$ $\overrightarrow{b}+a.c$ (Distributive property of dot product). $\Rightarrow \vec{a} \cdot \left(-\vec{b} \right) = -\left(\vec{a} \cdot \vec{b} \right) = \left(-\vec{b} \right)^{\rightarrow}$

Know the Formulae

Characteristic States Angle between two vectors and can be found by the expression given below :

$$\cos\theta = \frac{\overrightarrow{a \cdot b}}{|\overrightarrow{a}|} \text{ or, } \theta = \cos^{-1} \left(\frac{\overrightarrow{a \cdot b}}{|\overrightarrow{a}||\overrightarrow{b}|} \right).$$

Get More Learning Materials Here :

Objective Type Questions

- Q. 1. If θ is the angle between two vectors and then . 0 only when
 - (a) $0 < \theta < \frac{1}{2}$ (b) $0 \le \theta \le \frac{1}{2}$
- (c) $0 < \theta < \pi$ (d) $0 \le \theta \le \pi$ [NCERT Misc. Ex. Q. 16, Page 459] Ans. Correct option : (b)

Explanation :

Let θ be the angle between two vectors and Then, without loss of generality, and are nonzero vectors so that | | and | | are positive. It is known that, a b |a| |b| os .

:..

 $|a||b|\cos\theta = 0$

 $| \because | a |$ and | b | are positive. $\Rightarrow \cos\theta \ge 0$ $\Rightarrow 0 \le \theta \le -$

Q. 2. Let

be two-unit vectors and θ is the angle between them. Then + is a unit vector if

- (a) $\theta = -$ (b) $\theta = -$
- (c) $\theta = \frac{\pi}{2}$

[NCERT Misc. Ex. Q. 17, Page 459]

Ans. Correct option : (d) **Explanation** :

> Let and be two-unit vectors and θ be the angle between them. Then, | = 1.+ = 1

is a unit vector if $\begin{vmatrix} a & b \end{vmatrix} = 1$. Now,

$$\begin{vmatrix} a+b \end{vmatrix} = 1$$

$$(\vec{a} \quad \vec{b})^2 = 1$$

$$\Rightarrow \quad (\vec{a}+\vec{b}).(\vec{a}+\vec{b}) = 1$$

$$\Rightarrow \quad \vec{a}.\vec{a}+\vec{a}.\vec{b}+\vec{b}.\vec{a}+\vec{b}.\vec{b} = 1$$

$$\Rightarrow \quad |\vec{a}|^2 + \quad \vec{a}.\vec{b}+|\vec{b}|^2 =$$

$$\Rightarrow \quad 1 + 2|\vec{a}||\vec{b}|\cos\theta + =$$

$$\cos\theta \quad -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{2\pi}$$

So that, $| + |$ is a unit vector if $\theta = \frac{2\pi}{2\pi}$.

Q. 3. The angle between two vectors and with
magnitudes
$$\sqrt{3}$$
 and 4, respectively, and $a.b = \sqrt{}$ is :
(a) $\frac{}{6}$ (b) $\frac{}{3}$

(c) – (d)
$$\frac{5}{2}$$

[NCERT Exemp. Ex. 10.3, Q. 22, Page 217] **Ans.** Correct option : (b) Explanation :

Here,
$$| | \sqrt{}, | |$$
 and $a b = 2\sqrt{3}$ Given]
We know that,
 $a b |a||b|$ os
 $\Rightarrow 2\sqrt{3} = \sqrt{3.4.\cos\theta}$
 $\Rightarrow \cos\theta = \frac{2\sqrt{3}}{4\sqrt{3}} = \frac{1}{2}$

Q.4. Find the value of λ such that the vectors $a = 2\hat{i} + \lambda^{+} + \hat{a}$ and $b = \hat{i} + \hat{i} + \hat{a}$ are orthogonal.

(a) 0 (b) 1
(c)
$$\frac{3}{2}$$
 (d) $\frac{5}{2}$

[NCERT Exemp. Ex. 10.3, Q. 23, Page 217] **Ans.** Correct option : (d)

Explanation :

Since, two non-zero vectors and are orthogonal, i.e.,

$$\therefore (i+\lambda j+k) \cdot i+ j+k = 2 \quad 2\lambda + = 2 \quad -\xi$$

Q. 5. The value of λ for which the vectors $3\hat{}\hat{}\hat{}$

and $2i - 4j + \lambda k$ are parallel is

Ans. Correct option : (a) **Explanation** :

> Let a = 3i - 6j + k and $b = 2i - 4 = \lambda$

$$\frac{3}{2} \quad \frac{-6}{-4} = \frac{2}{7}$$

λ

Q. 6. If , and are unit vectors such that

then the value of

(1 mark each)

CLICK HERE

is

Oswaal CBSE Chapterwise & Topicwise Question Bank, MATHEMATICS, Class-XII

Q. 8. If , , and are three vectors such that

is

 $\Rightarrow 4+9+25+ (\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}) =$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{-38}{-19} = -19$

(a) 0

 $\vec{a} \stackrel{b}{\stackrel{\vec{b}}{\vec{b}}} \vec{b}$

 $\left(\vec{a} \quad \vec{b} \\ \vec{a} \quad \vec{b} \\ \vec{b} \right) \cdot b$

and a = 2, |b| = and, then the value of

0 and 2 2

 $\Rightarrow \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = [\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$

(b) 1

(d) 38

(b) 3 (a) 1 (c) -3/2(d) None of these [NCERT Exemp. Ex. 10.3, Q. 29, Page 218] **Ans.** Correct option : (c) **Explanation** : and 2 , 2 , 2 We have,

> $\vec{a}^2 \quad \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{b}^2 + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c}^2$ = 0 $\vec{a}^2 \quad \vec{b}^2 + \vec{c}^2 + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} =$ $[\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}, \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{b} \text{ and } \vec{c} \cdot \vec{a} = \vec{a} \cdot \vec{c}]$ $1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$ \vec{a} $\vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2}$

Q. 7. The projection vector of on is

(a)
$$\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \vec{b}$$
 (b) \vec{b}
(c) $\frac{\cdot}{\vec{a}}$ (d) $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\right)$

[NCERT Exemp. Ex. 10.3, Q. 30, Page 218]

Ans. Correct option : (a) **Explanation** :

Projection vector of on is given by,

Very Short Answer Type Questions

ĥ

Q. 1. If $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$ are unit vectors, then what is the angle between $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$, so that $\sqrt{2}$ is a unit vector ? 🗌 [Delhi Set I, II, III Comptt. 2015]

Sol.

$$\begin{aligned}
\int \sqrt{2} & \vec{x} = 1 \\
2 | \vec{a} | 2\sqrt{2} \vec{a} & | & | = 1 \\
\sqrt{2} & \vec{a} & | & | = 1 \\
\sqrt{2} & \vec{a} & | & | = 1 \\
& \sqrt{2} & \vec{a} & | & | = 1 \\
& \vec{a} & = 1 \\
& = \frac{1}{-\sqrt{2}} & = \frac{1}{\sqrt{2}} \\
& \cos \theta = \frac{1}{\sqrt{2}} \\
& 1.1 \cos \theta = \frac{1}{\sqrt{2}} \\
& \theta = - 1 \\
\end{aligned}$$
[CBSE Marking Scheme 2015]
O. 2. Find the projection of vector $\vec{a} = 2\hat{i} + \hat{3} + 2\hat{2}$ on

the vector $b = 2\hat{i} + 2\hat{i}$ R&U [NCERT] [O.D. Set I, II, III Comptt. 2015]

 $(2i+3j+2k)\cdot(2i \ 2) = 12$ Sol. $\frac{1}{2}$ $p = \frac{\stackrel{\rightarrow}{\longrightarrow}}{\stackrel{\rightarrow}{\xrightarrow{h}}}$ or $p = \frac{12}{\stackrel{\rightarrow}{\xrightarrow{h}}}$ $=\frac{12}{1}=4$ $\frac{1}{2}$

[CBSE Marking Scheme 2015]

Q. 3. Write the projection of the vector $\vec{a} = 2\hat{i} - +$ on

the vector
$$\vec{b} = \hat{i} + 2 + 2$$
.

CLICK HERE

Sol. Projection of a vector on the vector is given by $= \frac{(i-j+k)\cdot(i+2)}{\sqrt{1^2+2^2+2^2}}$ _ _____ 1 [CBSE Marking Scheme 2014]

(1 mark each)

2

380]

Get More Learning Materials Here :

Commonly Made Error

• Most of the candidates calculate dot product instead of applying projection formula.

Answering Tip

- Clarify the concept of scalar projection of vector thoroughly.
- Q. 4. Find the projection of vector $\hat{i}+3\hat{j}+7\hat{k}$ on the

vector 2i-3j+6k. R&U [Delhi Set II, III 2014]

Sol. Required projection :

$$=\frac{(\hat{i}+3\hat{j}+7\hat{k}).(2\hat{i}-3\hat{j}+6\hat{k})}{2\hat{i}-3\hat{j}+6\hat{k}}$$

$$=\frac{1}{\sqrt{2}}=\frac{1}{7}=5$$

Q. 5. Write the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ along

the vector j. U [Foreign Set I, II, III 2014]

Sol. We know that the projection of a vector on the vector $\stackrel{\rightarrow}{\rightarrow}$ is given by $\frac{\vec{a} \cdot \vec{b}}{\vec{a}}$

 \therefore The projection of the vector i + j + k along the vector \hat{j} is,

$$(\hat{i} + \hat{j} + \hat{k}) \cdot \left(\frac{\hat{j}}{\sqrt{0^2 + 1^2 + 0^2}}\right) = 1.$$
 1

Q. 6. Write the projection of the vector 7i + j - 4k on

the vector 2i+6j+3k. R& [Delhi 2015] [Delhi Set I, II, III Comptt. 2013]

Q.7. Write the projection of + on a=2i 2i+k, $\overrightarrow{=}=i+2$ 2kwhere and $\overrightarrow{c} = 2 \widehat{i} - + 4 \widehat{.}$

U [O.D. Set I, II, III Comptt. 2013]

$$\overrightarrow{} = 2^{\hat{}} 2^{\hat{}} \hat{k}$$

$$= i + j - k$$
and
$$\overrightarrow{} = \hat{i} - \hat{j} + \hat{k}$$

$$+ = i + 2j - 2k + 2i - i + 4$$

$$= i + j + k$$
Projection of
$$+ \overrightarrow{} \text{ on } \overrightarrow{}$$

$$= \frac{b + c \cdot a}{|\overrightarrow{a}|}$$

$$(3\hat{i} + \hat{i} + 2\hat{k}) \cdot (2\hat{i} - 2\hat{k})$$

Sol.

CLICK HERE

$$= \underbrace{1}_{\sqrt{2}} \underbrace{1}_{\sqrt{2}}$$
$$= \underbrace{1}_{\sqrt{2}} \underbrace{1}_{\sqrt{2}}$$

[CBSE Marking Scheme 2013]

Q. 8. Find ' λ ' when the projection of $\vec{a} = \lambda \hat{i} + \hat{i} + \hat{4}$

on $b = 2\hat{i} + 6\hat{} + 3\hat{}$ is 4 units.

R& [Delhi Set I, II, III 2012]

Sol. Projection of $\stackrel{\rightarrow}{\rightarrow}$ on $\stackrel{\rightarrow}{\rightarrow} = 4$, (given) $\frac{\rightarrow}{\cdot}$ = 4 $\frac{1}{2}$ $\frac{(\lambda i + j + 4k).(2i + +)}{\sqrt{}} = 4$ or $2\lambda + 6 + 12 = 7 \times 4$ $2\lambda = 28 - 18 = 10$ or or $\lambda = \frac{1}{2} = 5.$ $\frac{1}{2}$ or [CBSE Marking Scheme 2012] are perpendicular vectors, Q. 9. If and = 13 and \overrightarrow{a} = 5, find the value of \overrightarrow{b} . | + [O.D. Set III 2014]

4

 $\frac{1}{2}$

381

Get More Learning Materials Here :

 $a + b^2 = |a|^2 + |b|^2 + 2$. Sol. $(13)^2 = () |\overrightarrow{b}|$ 2i + j - 3k perpendicular? or R& [O.D. Set I, II, III Comptt. 2013, 2011] \Rightarrow $\cdot | | \cos \theta = 0 \text{ as } \theta = 90^{\circ} \}$ { :: [Delhi Set I, II, III Comptt. 2012] Sol. For two vectors to be perpendicular, their product $(169 - 25) = \overrightarrow{b}^2$ should be zero. or $(i+2\lambda j+k).(2i+-3) = 0$ ÷. b = 121 or $1 \times 2 + 2\lambda \times 1 + 1 \times (-3) = 0$ or [CBSE Marking Scheme 2014] $\lambda = -$ 1 Q. 10. Write the value of λ so that the vectors Q. 12. Find x, if for a unit vector and $a = 2i \lambda$ b = i - 2 + 3are and perpendicular to each other ? $(x + a) \cdot (x - a) = 15.$ [O.D. Set I 2013] [Delhi Set I, II, III Comptt. 2013] [O.D. Set I, II, III Comptt. 2012] Sol. = 1 $= 2i \lambda j k$ Sol. (x a).(Given) = 15= i - j + kand = 15 For perpendicular : $x^2 - 1 = 15$ = 0 $\{:: a \text{ is a unit vector } a = 1\}$ or $2 \times 1 + \lambda(-2) + 1 \times 3 = 0$ $x^2 = 16 \text{ or } x \pm 4$ $2\lambda = 5$ or As magnitude of a vector is non-negative. $\lambda =$ or x = 4.So 1 [CBSE Marking Scheme 2013] Q. 13. If and are unit vectors, then what is the angle between and for $-\sqrt{b}$ to be unit vectors? **R&** [O.D. Set-II, 2016] Sol. [Topper's Answer 2016] Q. 14. If *a*, *b* and are mutually perpendicular unit $\hat{a} = \hat{b} = \hat{c} = 1$ and ...(ii) vectors, then find value of $2^{+}\dot{b}^{+}$. Now, $2a + b + c^2 = (a + b + c) (a + +)$ U [All India 2015] $=4(\hat{a}\hat{a})$ $(\hat{a}\hat{b})$ $(\hat{a}\hat{c})$ $\hat{b} \hat{a}$ Sol. Given and are mutually perpendicular $+(\hat{b}.\hat{b})+(\hat{b}.\hat{c})+2(\hat{c}.\hat{a})+(\hat{c}.\hat{b})+\hat{c}.\hat{c}$ unit vectors, i.e.,

 $[\because a \cdot a = a^2]$

= 0

...(i)

CLICK HERE

Get More Learning Materials Here :

O. 11. For what value of λ are the vectors $+2\lambda + k$ and

🕀 www.studentbro.in

382

[:: dot product is distributive over addition] ¹/₂ **Sol.** Given, $\vec{a} = 2$, $\vec{b} = 3$ and = 3 = 4(| |) + 2(0) + 2(0) + 2() | |: Projection of on $+2(0)+(0)+\hat{c}^{2}$ $= \frac{\cdot}{a} = \frac{\cdot}{a} \quad [\because \vec{a} \cdot \vec{b} = \overset{\rightarrow}{}$ from Eq. (i) and $\overrightarrow{a} \overrightarrow{b} = \overrightarrow{b} \overrightarrow{a}$ = 4(1) + 1 + 1 = 4 + 1 + 1 = 6 $= \frac{1}{2}$ [$:: \vec{a} \cdot \vec{b}$ and $|\vec{a}|$ $2a+b+c = \sqrt{}$ ÷ $\frac{1}{2}$ [:: length cannot be negative] [CBSE Marking Scheme 2015] Q. 18. If a, b, c are unit vectors such that Q. 15. If and are two unit vectors such that then write the value of ∪ [Foreign 2015] also a unit vector, then find the angle between Sol. Try Yourself and . R& [Delhi 2014] Q. 19. If and are unit vectors, then find the angle $\vec{a} = 1$, $\vec{b} = 1$ and Sol. Given. between and $\overrightarrow{}$, given that ($\sqrt{3}$ –) is a unit $\vec{a} + \vec{b}^2 = (\vec{a} \quad \vec{b}).($ Now, vector. R&U [Delhi 2014C][NCERT Exemplar] Sol. Try Yourself Q. 20. Write the projection of vector – on the vector $\vec{a} + \vec{b}^2 = \vec{2} \cdot \vec{a} \cdot \vec{b}$ or ∪ [All India 2011] [:a.b b.aan a.a] $|a|^{2}$] Sol. Try Yourself 1 = 1 +or Q. 21. If \hat{i} is a unit vector and $(\vec{x} - \vec{P})$. + = 80, then or find x. **U** [All India 2009] $\cos\theta = -\frac{1}{2} \quad [\because \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta]$ or Sol. Try Yourself $\cos\theta = -\frac{1}{2} \qquad [\because \vec{a} \mid = \mid \vec{b} \mid = 1]$ Q. 22. Write the angle between vectors $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$ with or $\cos\theta = \cos\frac{2\pi}{2} \text{ or } \theta = \frac{2\pi}{2}$ magnitudes $\sqrt{3}$ and 2 respectively, having or $\sqrt{6}$. U [All India 2011] Sol. Try Yourself Hence, the angle between $\overrightarrow{}$ and $\overrightarrow{}$ is $\frac{2\pi}{-1/2}$. $\frac{1}{2}$ Q. 23. If $\overrightarrow{} = \sqrt{3}$, $\overrightarrow{} = 2$ and angle between $\overrightarrow{}$ and $\overrightarrow{}$ [CBSE Marking Scheme 2014] is 60°, then find U [Delhi 2011C] . O. 16. Find \vec{a} . \vec{a} if $\vec{a} = -\hat{i}+\hat{j}-2\hat{k}$ and $\vec{a} = 2\hat{i}+3\hat{i}-\hat{k}$. Sol. Try Yourself R& [All India 2009C] Q. 24. Find $\xrightarrow{\rightarrow}$ if $\xrightarrow{\rightarrow}$ = $\stackrel{\wedge}{i-j}$ **Sol.** Given, $\overrightarrow{i} = -i + j - 2k$ and $\overrightarrow{i} = 2$ 3 k $2\hat{i}+3\hat{j}$ 3. U [Delhi 2009C] $=(-\hat{i}+\hat{j} \ 2\hat{k}).(2\hat{i} \ 3 -)$ Then, Sol. Try Yourself = -2 + 3 + 2 = 3**Q.** 25. Find the value of λ_i , if the vectors $\hat{i} + \lambda \hat{j} + \hat{k}$ and [CBSE Marking Scheme 2019] $3\hat{i}+2\hat{j}-4\hat{k}$ are perpendicular to each other. Q. 17. If = 2, = 3 and = 3, then find the R& [All India 2010C] projection of on . R& [All India 2010C] Sol. Try Yourself

| 1

1

1

1

=

1

1

1

and \rightarrow =

Get More Learning Materials Here :

CLICK HERE

Detailed Solution :Q. 26. Find the projection of
$$\vec{n}$$
 on \vec{r} , if $= 8$ and \vec{r} , $\vec{r} = 2\hat{r} + \hat{6}\hat{j}$ \vec{n} $\vec{r} = 8$ and \vec{r} , $\vec{r} = 2\hat{r} + \hat{6}\hat{j}$ \vec{n} Sol. Try Yourself1 \vec{r} \vec{r} \vec{r} \vec{r} \vec{r} Q. 27. Find the magnitude of each of the vectorsand \vec{r} \vec{r} \vec{r} \vec{r} Q. 27. Find the magnitude such that the tangle \vec{r} \vec{r} \vec{r} \vec{r} \vec{r} Q. 27. Find the magnitude of each of the vectorsand \vec{r} \vec{r}

$$\sin \theta = \frac{4\sqrt{6}}{4} = \frac{\sqrt{6}}{4}$$

[CBSE Marking Scheme, 2018]

Get More Learning Materials Here : 📕

Now,

 $| |^2 + 2 \cdot b = 0$

 $\overrightarrow{b}.(\overrightarrow{2a}+\overrightarrow{b}) = 0$

 $2\overrightarrow{a} + b \cdot b = 2\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{\cdot}$

CLICK HERE

...(i)

1

1

Regional www.studentbro.in

1

Detailed Answer:

Let
$$\overrightarrow{a} = \overrightarrow{i} + \Rightarrow \overrightarrow{a} = \sqrt{1 + (2)} \quad 3^2 = \sqrt{2}$$

 $\overrightarrow{b} = 3\overrightarrow{i} - 2 + \Rightarrow b = \sqrt{3 + (2)} \quad 1^2 = \sqrt{14}$
 $\therefore \qquad \cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{| \cdot | \cdot | \cdot |}$
 $= \frac{(\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}) \cdot (3\overrightarrow{i} \cdot 2)}{\sqrt{2} \sqrt{2}} \quad 1$

$$= \frac{3 \quad 4 \quad 3}{\sqrt{1 - \cos^2 \theta}} = \frac{10}{-\frac{5}{49}} = \frac{\sqrt{1 - \frac{25}{49}}}{\sqrt{1 - \frac{25}{49}}}$$
$$= \frac{\sqrt{24}}{-\frac{5}{49}} = \frac{\sqrt{-\frac{5}{49}}}{-\frac{5}{49}}$$

385

1

Long Answer Type Questions-I (4 marks each) Q. 1. Find the vector p which is perpendicular to both $\frac{AB \times AC}{AB \times AC}$ Required vector = Sol. 1 $\vec{\alpha} = 4$ + 5 - k and $\vec{\beta} = \hat{i} - 4j + 5k$ and $\vec{p} = \hat{q} = 21$, where $\vec{q} = 3\hat{i}$ = (Position vector of B) [O.D. Set I, II, III Comptt. 2014] - (Position vector of A) Sol. Any vector perpendicular to both and = - + 2 + kSimilarly Parallel to $(\vec{\beta})$ $= \hat{i} + \hat{j} + \hat{k}$ 1 $\overrightarrow{p} = \lambda^{\rightarrow}$ ÷ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix}$ $= \lambda \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & -1 \\ 1 & -4 & 5 \end{vmatrix}$ $\frac{1}{2}$ = i(4-1) - j(-2-0) + k - - $= \lambda [\hat{i}(25-4) - \hat{j}(20+1) + \hat{k}(-16-5)]$ $AB \times AC = 3 \quad 2 \quad k$ $= \lambda 2\hat{i} - 2\hat{j} - 2\hat{k}$ = 211 1 :. Required unit vector $= \frac{1}{\sqrt{14}} 3i 2j k$ (Given) 1 $\lambda 21\hat{i} - 21\hat{j} - 21\hat{k} .(3\hat{i} + \hat{j}) = 21$ [CBSE Marking Scheme 2014] $\lambda(63 - 21 + 21) = 21$ $\frac{1}{2}$ **Commonly Made Error** $\lambda = \frac{1}{2}$ $\frac{1}{2}$ • Sometimes, candidates use cross product without $\overrightarrow{}$ and $\overrightarrow{}$. Some candidates make evaluating $p = \lambda \ 21\hat{i} - 21\hat{j} - 21\hat{k}$ ÷ mistakes while evaluating the unit vector in the final answer. $p = \frac{1}{2} 21\hat{i} - 21\hat{j} - 21\hat{k}$ **Answering Tip** $p = 7\hat{i} \quad 7\hat{j} \quad 7\hat{k}$ 1 • Vector algebra in finding unit vector need to be understood by the students. [CBSE Marking Scheme 2014] and $\vec{b} = 5\hat{i} -$ Q. 2. Find the unit vector perpendicular to the plane Q. 3. If *a* 7 iλ then find ABC where the position vectors A, B and C are the value of λ so that and $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + + 2$ and 2 + are perpendicular vectors. U [O.D. Set I 2013] U [O.D. Set I, II, III Comptt. 2014]

:..

Get More Learning Materials Here : 📕

Sol. Given,

 $\stackrel{\rightarrow}{=} i - j + 7k$

and

and
$$\overrightarrow{-} = (i - j + 7k) + 5i - + \lambda^{n}$$

$$= 6i - 2j + 7 + \lambda k^{n}$$

$$= 6i - 2j + 7 + \lambda k^{n}$$

$$\overrightarrow{-} = (i - j + 7k) - 5i - + \lambda^{n}$$

$$= -4 + 7 - \lambda$$

$$= -4 + 7 - \lambda$$

 $5i - i + \lambda k$

Since $(\stackrel{\rightarrow}{} + \stackrel{\rightarrow}{})$ and $(\stackrel{\rightarrow}{} - \stackrel{\rightarrow}{})$ are perpendicular vectors,

$$\therefore \qquad (-+) \cdot (--) = 0$$

$$\{6^{\circ} - 2j + (7+\lambda)^{\circ}\} \cdot \{-4^{\circ} + (7-\lambda)^{\circ}\} = 0$$
or
$$-24 + (7+\lambda)(7-\lambda) = 0$$
or
$$49 - \lambda^{2} - 24 = 0$$
or
$$\lambda^{2} = 49 - 24 = 25$$
or
$$\lambda = \pm 5 \text{ units}$$
[CBSE Marking Scheme, 2013]

Q. 4. Vectors , and are such that a + b + cand = 3, |= 5 and $\overrightarrow{c} = 7$. Find the angle between \overrightarrow{a} and \overrightarrow{c} . R&U [Delhi Set I, II, III, 2014] Sol. $, \therefore \qquad \frac{1}{2}$ or $\overrightarrow{a} + \overrightarrow{b}^2 = - 2$ $|\rightarrow||\rightarrow|$

$$θ$$
 being angle between , 1
 $∴$ cos $θ$ = - = - or $θ$ = - 1
[CBSE Marking Scheme 2014]

AI Q. 5. The scalar product of the vector $\vec{a} = \hat{i} + i$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4 - 5$ and $\vec{c} = \lambda\hat{i} + 2j + 3k$ is equal to one. Find the value of λ and hence find the unit vector along b c.

[O.D. Set I, II, III, 2014] Sol. Given that

$$\overrightarrow{a} + \overrightarrow{a} = 1$$

$$\overrightarrow{\rightarrow}$$
 $\overrightarrow{\rightarrow}$ = 1

 $\hat{(i+j+k)} \cdot (2\hat{i}+4\hat{j}-k) + \hat{(i+j+k)} \cdot \hat{\lambda}\hat{i} + \hat{+} 3$ $= \left| (\lambda+2)\hat{i}+\hat{6j}-2\hat{k} \right|$ ^{1/2}

or
$$(2 + 4 - 5) + (\lambda + 2 + 3)$$

= $\sqrt{(\lambda + 2)^2 - 3}$ 1

$$\therefore \qquad (\lambda + 6)^2 = (\lambda + 2)^2 + 40 \text{ or } \lambda = 1 \qquad \frac{1}{2}$$
Hence
$$\frac{\rightarrow}{+} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{+}$$

$$= \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{-2\hat{k}} \qquad 1$$

$$= -i + -j - -k$$
[CBSE Marking Scheme 2014]

Alternative Method :
Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + k$$

and $+ \overrightarrow{} = (2\hat{i} + 4\hat{j} - \hat{k}) + \lambda\hat{i} + \hat{-} + 3^{\hat{-}}$
 $+ = (-+\lambda)\hat{i} + \hat{j} - 2k$
So, $\overrightarrow{} + \overrightarrow{} = \sqrt{(-+\lambda)^2 + -}$
 $= \sqrt{\lambda^2 + 4\lambda + 44} = r$, (say)...(i) ¹/₂

 \therefore Unit vector along + is given by :

= 1

$$\frac{+}{r} = \frac{+\lambda}{r}\hat{i} + \frac{1}{r}\hat{j} - \frac{2}{r}\hat{k}$$

Since,

or

or

or

:..

or
$$(\hat{i}+\hat{j}+\hat{k}).\left(\frac{2+\lambda}{r}\hat{i}+\frac{6}{r}\hat{j}-\frac{2}{r}\hat{k}\right)=1$$
 ^{1/2}

or
$$1\left(\frac{2+\lambda}{r}\right) + 1\left(\frac{6}{r}\right) + 1\left(\frac{-2}{r}\right) = 1$$
 ¹/₂

or $---= \Rightarrow \lambda + = r$

$$\lambda + 6 = \sqrt{\lambda^2 + \lambda + 4}$$
, from (i) $\frac{1}{2}$

$$\lambda + 12\lambda + 36 = \lambda + \lambda + 4$$
$$8\lambda = 8$$
$$\lambda = 1 \Longrightarrow r = 7$$
^{1/2}

Hence,
$$\xrightarrow{+}_{+}$$
 = $\frac{3\hat{i}+6\hat{j}-2\hat{j}}{7}$

$$= \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k}$$
 1

Q. 6. Dot product of a vector with vectors $\hat{i} \quad \hat{j} + \hat{k}, 2\hat{i} + 3$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

🗌 [Delhi Set I, II, III Comptt. 2013]

CLICK HERE

1/2

Sol.	Let the required	vecto	r be			
	-	= x	i yj	zk	:	1⁄2
	Also, let \rightarrow	$=\hat{i}$	$-j+\hat{k}$	1		
	\rightarrow	=	$\hat{i} + \hat{j} -$	\hat{k}		
	and	$=\hat{i}$	$+\hat{j}+\hat{k}$			
	Given,	= 4	or <i>x</i> –	y + z = 4	(i)	1⁄2
	$\rightarrow \rightarrow$	= 0	or $2x$	+ y - 3z =	0(ii)	1⁄2
	and $\rightarrow \rightarrow$	= 2	or $x +$	y + z = 2	2(iii) ½	/2
	By solving eqns. ((i), (ii) x = 2,), & (ii y = -	i), we get $1, z = 1$	1	.1⁄2
	∴ The req. vector	' is	= 2	i - j + k		1⁄2
		ICB	SE M	arking Sc	heme 201	31

Answering Tip

- Generally students commit errors in simplifying equation which leads to get the wrong result.
- Q. 7. Find the values of λ for which the angle between the

vectors $\overrightarrow{a} = 2$ $\overset{2}{i} + 4$ + $\overset{\wedge}{}$ and $\overrightarrow{b} = 7i - 2 + \lambda$ is obtuse. 🗌 [O.D. Set I, II, III Comptt. 2013] \rightarrow = 2² 4 Sol. Here, $\overrightarrow{i} = 7\hat{i} - 2\hat{j} + \lambda\hat{k}$ and If θ is the angle between the vectors and then $= |a| |b| \cos \theta$ Or $\frac{1}{2}$ $\cos \theta =$ for θ to be obtuse $\cos \theta < 0 \text{ or } \xrightarrow{\rightarrow} < 0$ $\frac{1}{2}$ $\hat{k} \cdot 7\hat{i} - 2\hat{j} + \lambda\hat{k} < 0$ 1 or 2 $14\lambda^2 - 8\lambda + \lambda < 0$ or $\begin{array}{l} 14\lambda^2-7\lambda < 0\\ 2\lambda^2-\lambda < 0 \end{array}$ or or $\lambda(2\lambda - 1) < 0$ $\frac{1}{2}$ or $\frac{1}{2}$ $\lambda \in \left(0, \frac{1}{2}\right)$ ÷ 1 [CBSE Marking Scheme 2013]

Q. 8. If the sum of two unit vectors $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$ is a unit vector, then show that the magnitude of their difference is $\sqrt{3}$.

R& [Delhi Set I, II, III Comptt. 2012]

Given that , and are unit vectors. |a| = |b| = |c| = 1So, or $2 \mid a \mid \mid b \mid \cos \theta = -1$ 1 or $|d| = \sqrt{|a|^2 + |b|^2 - 2|a||b|\cos\theta}$ 1 1 • [CBSE Marking Scheme 2012] O. 9. If a, b, c are three vectors such that | = 5, | = 12 and | c | = 13 and a+b+c = 0, | = 13find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \cdots$ U [Delhi Set I, II, III, 2012] $\vec{a} + \vec{b} + \vec{c}^2 = 0$ $\frac{1}{2}$ or $+2(\overset{\rightarrow}{}\overset{\rightarrow}{}\overset{\rightarrow}{}\overset{\rightarrow}{}\overset{\rightarrow}{}\overset{\rightarrow}{}\overset{\rightarrow}{})$ 1 or $| \stackrel{\rightarrow}{\rightarrow} |^2 + | \stackrel{\rightarrow}{\rightarrow} |^2 + | \stackrel{\rightarrow}{\rightarrow} |^2$ $+2(\overrightarrow{a} \overrightarrow{b}+\overrightarrow{b} \overrightarrow{c}+\overrightarrow{})=0$ 1 *.*.. $= -\frac{1}{-}[|a| + |b| + |c|$ 1/2 = - - (25 + 144 + 169)= - 169 [CBSE Marking Scheme 2012] are three vectors such that Q. 10. If , and $|\vec{a}| = 3, |\vec{b}| = 4$ and $|\vec{c}|$ and each one of them is perpendicular to the sum of the other two, then find *a b c* . R& [O.D. Comptt. 2011, 2010] [O.D. Set I, II, III Comptt. 2013]

Sol. Since $\vec{a} \perp (\vec{b} + \vec{c})$, therefore $\vec{a} \cdot (\vec{b} + \vec{c}) = 0$ $\overrightarrow{a} b +$ = 0or

[387

 $|c| = \sqrt{|a|^2 + |b|^2 + 2|a||b|\cos\theta}$ 1

Get More Learning Materials Here :

CLICK HERE

Sol. Let,

Sol.

or

 $\overrightarrow{a.a+}(\overrightarrow{a}\overrightarrow{b}+\overrightarrow{b}) =$ or 1⁄2 $\overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{a}) = \overrightarrow{a}^2$ or $a.(a++) = 3^2 = 9$...(i) ½ or Similarly, $\vec{b} \cdot (\vec{a} + \vec{+}) = \vec{b}^2 = 16$...(ii) ½ $\overrightarrow{c} \cdot (\overrightarrow{a} + \overrightarrow{+}) = \overrightarrow{c}^2 = 25$...(iii) ½ and Adding eqn. (i), (ii) and (iii), we get $\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) + \vec{b} \cdot \vec{a} + \vec{c}$ +c.(a++) = 50 $\frac{1}{2}$ $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}).(\overrightarrow{a} + \overrightarrow{+}) = 50$ or $\frac{1}{2}$ $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}^2 = 50$ $\frac{1}{2}$ or $a+b+c = \sqrt{50} = \sqrt{}$ $\frac{1}{2}$ or

[CBSE Marking Scheme 2013]

- . R&U [NCERT Exemplar] [Outside Delhi Set-II, 2015]

of equal magnitudes, show that the vector is equally inclined to a, b and $\overrightarrow{}$. Also, find the angle which + + makes with $\overrightarrow{}$ or $\overrightarrow{}$ or $\overrightarrow{}$. [Delhi 2017] Sol. $\overrightarrow{a} = \overrightarrow{b} = \overrightarrow{c}$ and $= 0 = = ...(i) \mathbf{1}$

Let α , β and γ be the angles made by a + b + cwith , and $\stackrel{\rightarrow}{\rightarrow}$ respectively

$$\vec{a} + \vec{b} + \vec{c} = \vec{a} + \vec{b} + \vec{c} \cos \alpha$$
or
$$\alpha = \cos^{-1} \left(\frac{|\vec{a}|}{|\vec{a}| + \vec{b} + \vec{c}} \right)$$
Similarly, $\beta = \cos^{-1} \left(\frac{|\vec{b}|}{|\vec{a}| + \vec{b} + \vec{c}} \right)$ and
$$\gamma = \cos^{-1} \left(\frac{|\vec{c}|}{|\vec{a}| + \vec{b} + \vec{c}} \right)$$
using (i), we get $\alpha = \beta = \gamma$
Now
$$\vec{a} + \vec{b} + \vec{c}^{2} = \vec{a}^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a} + \vec{b} + \vec{c} + \vec{c})$$
1
or
$$\vec{a} + \vec{b} + \vec{c}^{2} = 3 \vec{a}^{2} (\text{using (i)})$$
or
$$\vec{a} + \vec{b} + \vec{c} = \sqrt{3} |\vec{a}|$$

$$\therefore \qquad \cos^{-1} \left(\frac{1}{\sqrt{3}} \right) = \beta = \gamma$$
[CBSE Marking Scheme, 2017]

Q. 13. If a, b and $\stackrel{\rightarrow}{\rightarrow}$ are mutually perpendicular vectors of equal magnitudes, find the angles which the vector $\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow}$ makes with the vectors , and $\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} \stackrel{\frown}{-}$ [O.D. Comptt. 2017]

Sol. Let the vector $\overrightarrow{a} = \overrightarrow{a+b+c}$ makes angles α ,

 β , γ respectively with the vector *a*, *b*, *c*

Given that $\overrightarrow{a} = \overrightarrow{b} = \overrightarrow{c}$ and = = 0

$$\cos \alpha = \frac{\overrightarrow{a+b+c} \cdot a}{2a+b+2c} \qquad \frac{1}{2}$$

$$= \frac{2|\vec{a}|^2}{3|\vec{a}| \vec{a}} = \frac{2}{2} \text{ or } \alpha = \cos^{-1} \frac{2}{2} \qquad 1$$

$$\cos \beta = \frac{\overrightarrow{a+b+c} \cdot b}{2\overrightarrow{a+b+2c} \cdot b} = \frac{|\overrightarrow{b}|^2}{3|} = \frac{1}{2|b|}$$

or
$$\beta = \cos^{-1} \frac{1}{2}$$

$$\cos \gamma = \frac{\overrightarrow{a+b+}}{2\overrightarrow{a+b+2}}$$

Get More Learning Materials Here : 📕

CLICK HERE

🕀 www.studentbro.in

1

 $= \frac{2|\vec{c}|^2}{3||} = \frac{2}{2}$ $\gamma = \cos^{-1} \frac{1}{2}$ $\frac{1}{2}$ or [CBSE Marking Scheme, 2017] **O.** 14. If $\stackrel{\rightarrow}{}$ and $\stackrel{\rightarrow}{}$ are two vectors, such that $\stackrel{\rightarrow}{a} = 2$, $\vec{b} = 1$ and $\cdot = 1$, then find (3 -R& [Delhi 2011] **Sol.** Given, $\vec{a} = 2$, $\vec{b} = 1$ and $\cdot = 1$ Now, $(3\vec{a} \quad 5\vec{b})$.() $= 6\vec{a}\cdot\vec{a} + 21\vec{a}\cdot\vec{b} - 1\vec{b}\cdot\vec{a} - 5$ $= 6|\vec{a}| + 21\vec{a}\cdot\vec{b} - 1\vec{b}\cdot - 5$ $[\vec{x}, \vec{x}, \vec{x} \mid \vec{x}|^2 \text{ and } \vec{a}, \vec{b} \mid \vec{b}, \vec{a}]$ $= 6 |\vec{a}| + 11 \vec{a} - 35$ $= 6(2)^2 + 11(1) - 35(1)^2$ = 24 + 11 - 35 = 0 $[:: \vec{a} = 2 \text{ and } \vec{b}$ Hence, $(3\vec{a} \quad 5\vec{b})$.) = 0[CBSE Marking Scheme 2011]

> TOPIC-3 Cross Product

Revision Notes

1. The cross product of two vectors and is defined by,

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where θ is the angle between the vectors \vec{a} and \vec{a} , $0 \le \theta \le \pi$ and \vec{a} is a unit vector

perpendicular to both $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$. For better illustration, see figure.

CLICK HERE

Consider $a = a_1 i + a_2 j + a_3 k$ $b = b_1 i + b j + a_3 k$

then,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\hat{i} - (a_1b_3 - a_3b_1)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$$

Q. 15. If vectors $\vec{i} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{j} = -\hat{i} + 2\hat{j} + \hat{k}$, and $\stackrel{\rightarrow}{=}$ = 3 + are such that $+\lambda$ is perpendicular to $\dot{}$, then find the value of λ . ∪ [Foreign 2011; All India 2009C] $\vec{x} = 2\hat{i} + 2\hat{i} + 3\hat{k}, \quad \vec{x} = -\hat{i} + 2\hat{i} + \hat{k}$ Sol. Given. [•] = 3 + and is perpendicular to $\vec{}$ Also, $+\lambda$ $\overrightarrow{c} = 0$ ÷ ...(i) 1 [: when \perp , then = 01 $= (2\hat{i}+2\hat{j}+\hat{k})+\lambda-\hat{i}$ $= \hat{i}(2-\lambda)+\hat{j}(2+\lambda)+\hat{k}+\lambda \mathbf{1}$ Now, or Then from Eq. (i), we get $\hat{i}(2-\lambda)+\hat{j}(2+2\lambda)+(3-\lambda)\cdot 3$ $\hat{j}=0$ 1 $3(2-\lambda) + 1(2+2\lambda) = 0$ $8-\lambda = 0$ 1 Q. 16. If $\vec{p} = 5\hat{i} + \lambda\hat{j} - 3\hat{k}$ and $\vec{q} = \hat{i} + 3\hat{j} - 5\hat{k}$, then

find the value of λ, so that + and - are perpendicular vectors.
Sol. Try Yourself Like O.3 LATO-I.

Get More Learning Materials Here :

Properties/Observations of Cross Product $\widehat{i} \times \widehat{i} = |\widehat{i}| |\widehat{i}| \text{ si } 0 = \overrightarrow{0} \text{ or } \widehat{i} \times \widehat{i} = \overrightarrow{0} = \widehat{j} \times \overline{j} = x$ $\widehat{i} \times \widehat{j} = |\widehat{i}| |\widehat{j}| \sin \frac{\pi}{2} \cdot \widehat{k} = \widehat{k} \text{ or } \widehat{i} \times \widehat{j} = \widehat{k}, \ \widehat{j} \times \widehat{k} = \widehat{i}, \ \widehat{k} \times \widehat{i} = \widehat{j}.$ $\mathbf{r} \stackrel{\rightarrow}{\mathbf{r}} \times \stackrel{\rightarrow}{\mathbf{r}}$ is a vector \vec{c} (say) then this vector \vec{c} is perpendicular to both the vectors $\stackrel{\rightarrow}{\mathbf{r}}$ and \vec{b} . $\Rightarrow \vec{a} \times \vec{b} = \vec{a} || \vec{b} \text{ or,} \vec{a} \rightarrow \vec{a} = \vec{0} \cdot \vec{a}$ $\vec{a} \times \vec{b} \neq \mathbf{x}$ (Commutative property does not hold for cross product). $\Rightarrow \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b}$ a c (Left distributive). edi $(b+c) \times a = b \times a + c \times a$ (Right distributive). (Distributive property of the vector product or cross product) 2. Relationship between Vector product and Scalar product [Lagrange's Identity] $\vec{a} \times \vec{b}^2 + \left(\vec{a} \cdot \vec{b}\right)^2 =$ or 3. Cauchy-Schwarz inequality : For any two vectors $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$, always have $\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \leq$ Note : and represent the adjacent sides of a triangle, then the area of triangle can be obtained by evaluating If 1 × If $\vec{}$ and $\vec{}$ represent the adjacent sides of a parallelogram, then the area of parallelogram can be obtained by evaluating × The area of the parallelogram with diagonals $\stackrel{\rightarrow}{\rightarrow}$ and is $-\stackrel{\rightarrow}{\rightarrow} \times$ **Know the Formulae** • Angle between two vectors \vec{a} and \vec{a} in terms of cross-product can be found by the expression given here : $\sin \theta = \frac{\times}{|a|}$ or $\theta = \sin^{-1} \begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \\ \overrightarrow{a} & \overrightarrow{b} \\ \overrightarrow{a} & \overrightarrow{b} \end{vmatrix}$ Theorem **Triangle Inequality**

For any two vectors \vec{a} and \vec{b} , we always have $\vec{a} + \vec{b} \le |$ |+

Proof : The given inequality holds trivially when either or *i.e.*, in such a case $\vec{a} + \vec{b} = 0 = || + ||$

So, let us check it for $\neq 0 \neq$

Then consider

$$+ ^{2} = a^{2} + |b|^{2} + 2$$

390]

Get More Learning Materials Here : 📕

or

 $\vec{a} + \vec{a}^2 = \vec{a}^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta$ For $\cos \theta \le 1$, we have : $|\vec{a}| |b| \cos \theta \le |\vec{b}| |b|$ or $\vec{a}^2 + |\vec{b}|^2 + |\vec{a}| |\vec{b}| \cos\theta \le |\vec{a}|^2 + |\vec{b}|^2 + | || ||$ $\vec{a} + \vec{b}^2 \leq \left(|\vec{a} + |\vec{b}| \right)^2$ or $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} \le |+|$ or

Objective Type Ouestions

[NCERT Ex.]

[391

Hence proved

Get More Learning Materials Here : 📕

between (a) π/6

(c) π/3

and is

(b) π/4

(d) $\pi/2$

CLICK HERE

>>>

 $=\frac{1}{2}\left|-9i+2\hat{j}+12\hat{k}\right|$

then

 $a \ b = |a| |b| \cos \theta$ Area of $\triangle OAB$ $\frac{1}{2}\sqrt{81}$ 4+144 $12 = 10 \times 2\cos\theta$ $\cos\theta \quad \frac{12}{20} = \frac{3}{5}$ $\frac{1}{\sqrt{229}}$ $\sqrt{1-\cos^2} = \sqrt{1-\frac{9}{25}}$ sin **Q.5.** For any vector , the value of $(a \times \hat{i})^2 + (a \times \hat{j})^2 + (a \times \hat{i})^2 + (a \times \hat{i})^2$ is equal to $\sin\theta = \pm \frac{1}{5}$ (a) ² (b) 2 $|\vec{a} \quad \vec{b}| = |\vec{a}| |\vec{b}| |\sin \theta|$ 2 2 (c) (d) $=10 \times 2 \times \frac{4}{5}$ [NCERT Exemp.] Ans. Correct option : (d) -16**Explanation** : Let a = xi + y + z**Q.** 7. The vectors $\lambda \hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} \quad \lambda \hat{j} \quad \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$ $a^2 x^2 + y^2 + z^2$ are coplanar, if \hat{j} \hat{k} (a) $\lambda = -2$ (b) $\lambda = 0$ (c) $\lambda = 1$ (d) $\lambda = -1$ $\vec{a} \quad \hat{i} = x \quad y \quad z$ [NCERT Exemp.] $1 \ 0 \ 0$ Ans. Correct option : (a) $=\hat{i}[0]-\hat{j}[-]+\hat{k}-$ **Explanation** : $=z\hat{j}-y\hat{k}$ and Let $(\vec{a} \quad \hat{i})^2 = (z\hat{j} - y\hat{k}) \quad \hat{j} - \hat{k}$ For , and to be coplanar, λ Similarly, ²² and 2 -1 λ $a \times i^{2} + (a \times j)^{2} + (a \times k)^{2} = y^{2} + z^{2} + x^{2} + z^{2} + x^{2} + x^{2$ $\lambda^3 - \lambda - \lambda - 2 - 2 - 4\lambda = 0$ Q. 6. If and , then the value of | \times , b $\lambda^3 \quad 6\lambda - 4 = 0$ is $(2)(^{2}22)(0)$ (a) 5 (b) 10 (c) 14 (d) 16 $\lambda -2 \text{ or } \lambda = \frac{2 \pm \sqrt{12}}{2}$ [NCERT Exemp.] Ans. Correct option : (d) $\lambda -2 \text{ or } \lambda = \frac{2 \pm 2\sqrt{3}}{2} = \pm \sqrt{3}$ Explanation : Here, a = 10, $b = and a \cdot b = 2$ [Given] Very Short Answer Type Questions (1 mark each) Q. 1. Write the value of $(i \times j).k + i.j$. Q. 3. Write the value of $(k \times i) \cdot j + i \cdot k$. U [O.D. Set I, 2012] ∪ [O.D. Set III, 2012] $(i \quad j) k \quad i j = k k +$ $(k \quad i) \quad j \quad i \quad k = j \quad j + j \quad j \neq j \quad j$ Sol. Sol. = 1 + 0 = 1= 1 + 0 = 11 1 [CBSE Marking Scheme 2012] [CBSE Marking Scheme 2012] **AI** Q. 4. If $\stackrel{\rightarrow}{}$ and $\stackrel{\rightarrow}{}$ are two vectors of magnitude 3 and Q. 2. Write the value of $(k \times j).i + j.k$. R&U [O.D. Set II, 2012] _ respectively such that × is a unit vector, $k = \hat{i}\hat{i}$ (k i)Sol. write the angle between & . U [O.D. 2010] [Delhi Set II, 2014] [S.Q.P. 2012] $= - \cdot \cdot + 0$ Sol. We know = -1 + 0 = -11 [CBSE Marking Scheme 2012] $= a | b | \sin \theta n$, where = 1

CLICK HERE

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

 $\times = 1$ a = 3[Given]
and b = - $\therefore \qquad 1 = 3 \times -\sin \theta$ or $\sin \theta = \frac{1}{-}$ or $\theta = - \qquad 1$ [CBSE Marking Scheme 2012]

Q. 5. Vectors \vec{a} and \vec{a} are such that $\vec{a} = \sqrt{2}$, |b| = and \times is a unit vector. Write the angle between & . U [Delhi Set II, 2014]

Sol. Since \times is a unit vector, therefore $\overrightarrow{\times} = 1$ or $a | b | \sin \theta = 1$ or $(\sqrt{3}) \left(\frac{2}{-}\right) \sin \theta = 1$ or $\sin \theta = \frac{\sqrt{3}}{-1}$ $\therefore \qquad \theta = -\cdot$ 1 [CBSE Marking Scheme 2014]

Q. 6. If
$$\vec{a} = 8$$
, $|\vec{b}| = 3$ and $\vec{a} \times \vec{b}| = 12$, find the angle between \vec{a} and \vec{b} .

Sol. We know $\vec{x} = \vec{a} | \vec{b} | \sin \theta$ or $\sin \theta = \frac{|a \times b|}{|a \times b|} = \frac{12}{|a|} = \frac{1}{|a|}$

$$\theta = -$$

1

Q. 7. For vector , if
$$| = a$$
, then write the value of :

$$\begin{pmatrix} \overrightarrow{a} \times i \end{pmatrix}^{2} + \begin{pmatrix} \overrightarrow{a} \times j \end{pmatrix}^{2} + \begin{pmatrix} \overrightarrow{a} & h \end{pmatrix}^{2}$$
R& [NCERT Exemplar]
[Delhi Set I, II, III Comptt. 2016]
Sol. Let $\xrightarrow{\rightarrow} = xi \ yj \ zk$

then
$$x^2 + y^2 + z^2 = a^2$$
 (as, $| = a$)
 $\overrightarrow{} = -yk + zj$,
 $\times = ,$
and $\overrightarrow{} \times = -xj + yi$
 $\therefore (\overrightarrow{a} \times \widehat{i})^2 + (\overrightarrow{a} \times \widehat{j})^2 + \overrightarrow{} \times \widehat{}^2$
 $= 2(x^2 + y^2 + z^2) = 2a^2$ 1
[CBSE Marking Scheme 2016]

Q. 8. Find the direction cosines of the vector joining the points *A*(1, 2, −3) and *B*(−1, −2, 1) directed from *B* to *A*.

[Outside Delhi Set I, II, III Comptt. 2016]

Sol.
$$= 2i + 4j - 4k$$

or d-ratios of are 2, 4, -4
:. Direction cosines are : $\frac{1}{2}, \frac{2}{2}, -\frac{2}{2}$

[CBSE Marking Scheme 2016]

Q. 9. Find the angle between two vectors $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$ having the same length $\sqrt{2}$ and their vector product is $-\hat{i} - \hat{j} + \hat{k}$.

[Outside Delhi Set I, II, III Comptt. 2016]

Sol.

$$\sin \theta = \frac{-i - j + k}{\sqrt{2} \cdot \sqrt{2}}$$

$$\sin \theta = \frac{\sqrt{3}}{2}$$
or

$$\theta = 60^{\circ}$$
or

$$\theta = -$$

[CBSE Marking Scheme 2016]

 $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 9 \\ 3 & -\lambda & \mu \end{vmatrix} = 0$

1

Q. 10. Find λ and μ if $(\hat{i} + 3\hat{j} + 9\hat{k}) \times (\hat{i} - \lambda^{\hat{\mu}}) = 0.$ [O.D. 2016]

Sol. Getting $\lambda = -9$ and $\mu = 27$ 1 [CBSE Marking Scheme 2016]

Detailed Solution :

 $(i+3j+9k) \times 3i - + = 0$ $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$

Get More Learning Materials Here : 📕

÷

CLICK HERE

or

or $\hat{i}(3\mu+9\lambda) - \hat{j}(\mu-27)$	$+\hat{k}(-\lambda-9) = 0$		Q. 11. If <i>a</i>	$\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are t	wo non-zero	vectors s	uch that
or	$3\mu + 9\lambda = 0$	(i)	$ \stackrel{\rightarrow}{a}\rangle$	$\vec{h} = \vec{a} \cdot \vec{h}$, the	en find the	angle	hetween
or	$\mu - 27 = 0$	(ii)	147	(0]- <i>u</i> 0, un	in mid the	ungie	between
or	$-\lambda - 9 = 0$	(iii)	$\stackrel{\rightarrow}{a}$ a	and \vec{b} .	R&U[O.D. 2	2010] [S.Ç).P. 2016]
from eqn. (ii) and (iii),					•		
	$\mu = 27$		Sol.	sin θ =	$= \cos \theta$		
and	$\lambda = -9$		or	θ =	= 45°		1
					[CBSE Markin	ng Schen	ne 2016]

Q. 12. If vectors \vec{a} and \vec{b} are such that $|\vec{a}| = \frac{1}{2}$, $|\vec{b}| = \frac{4}{\sqrt{3}}$ and $|\vec{a} \times \vec{b}| = \frac{1}{\sqrt{3}}$, then find $|\vec{a} \cdot \vec{a}|$. R&U [O.D. Set II 2016]

Q. 13. Write the angle between the vectors
$$\vec{a} \times \vec{b}$$
 and
 $\vec{b} \times \vec{a}$.
Sol. Angle between $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ is π .
[CBSE Marking Scheme 2017]
Q. 14. If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 225$ and $|\vec{a}| = 5$, then write
the value of $|\vec{b}|$.
R&U [O.D. Comptt. 2017]
Sol.
 $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 225$

$$(a \times b)^{2} + (a \cdot b)^{2} = 225$$

or $|\vec{a}|^{2}|\vec{b}|^{2} (\sin^{2}\theta + \cos^{2}\theta) = 225$
or $(5)^{2}|\vec{b}|^{2} = 225 \text{ or } |\vec{b}| = 3$ 1
[CBSE Marking Scheme 2017]

Q. 15. Write the value of the following.

$$\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$$

R&U [Foreign 2014]

Sol. $\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$ $= \hat{i} \times \hat{j} + \hat{i} \times \hat{k} + \hat{j} \times \hat{k} + \hat{j} \times \hat{i} + \hat{k} \times \hat{i} + \hat{k} \times \hat{j}$ $= \hat{k} - \hat{j} + \hat{i} - \hat{k} + \hat{j} - \hat{i} = \vec{0}$ $[\because \hat{i} \times \hat{j} = \hat{k}, \hat{i} \times \hat{k} = -\hat{j}, \hat{j} \times \hat{k} = \hat{i}, \hat{j} \times \hat{i}$ $-\hat{k} \times \hat{i} = \hat{j}, \hat{k} \times \hat{j} = -\hat{i}] \mathbf{1}$ [CBSE Marking Scheme 2014]

Answering Tip

CLICK HERE

• Practice of calculation of vectors should be done properly.

Q. 16. Find the angle between $ec{a}$ and $ec{b}$ with magnitudes

1 and 2 respectively, when $|\vec{a} \times \vec{b}| = \sqrt{3}$.

R&U [Delhi 2009]

🕀 www.studentbro.in

Sol. Given,
$$|\vec{a}| = 1$$
, $|\vec{b}| = 2$ and $|\vec{a} \times \vec{b}| = \sqrt{3}$

≫

Get More Learning Materials Here : 💻

or
$$|\vec{a}||\vec{b}|\sin\theta = \sqrt{3}$$

 $[\because \vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta.\hat{n} \text{ and } |\hat{n}| = 1]$
or $1 \times 2 \times \sin\theta = \sqrt{3}$
or $\sin\theta = \frac{\sqrt{3}}{2} = \sin\frac{\pi}{3} \text{ or } \theta = \frac{\pi}{3}$
Hence, the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$. 1
[CBSE Marking Scheme 2009]

Q. 17. Write the value of *p*, for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors.

R&U [Delhi 2009]

Sol. Given vectors are
$$\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$$
 and
 $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$
Also \vec{a} and \vec{b} are parallel vectors.
So,
 $\vec{a} \times \vec{b} = 0$
or
 $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 9 \\ 1 & p & 3 \end{vmatrix} = \vec{0}$
or
 $\hat{i}(6-9p) - \hat{j}(9-9) + \hat{k}(3p-2) = \vec{0}$
or
 $\hat{i}(6-9p) + \hat{k}(3p-2) = 0\hat{i} + 0\hat{j} + 0\hat{k}$
On comparing the coefficients of \hat{i} or \hat{k} form both sides, we get

Q. 1. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$.
Sol.
 $\vec{a} \times \vec{b} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1\end{vmatrix}$

Sol.

$$\begin{vmatrix} 3 & 1 & -1 \end{vmatrix}$$

= $\hat{i}(-2+1) - \hat{j}(-1+3) + \hat{k}(1-6)$
= $-i - 2j - 5k$ 1
 $\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$ = $\sqrt{1^2 + 2^2 + 5^2}$
= $\sqrt{1+4+25} = \sqrt{30}$ 1

Q. 2. Find the area of parallelogram whose adjacent
sides are determined by the vector
$$\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$$

and $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$.

$$6 - 9p = 0$$
$$p = \frac{2}{3}$$
1

[CBSE Marking Scheme 2009]

Alternate Method :

:..

Since
$$\overrightarrow{a}$$
 and \overrightarrow{b} are parallel, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$\Rightarrow \frac{3}{1} = \frac{2}{p} = \frac{9}{3} \Rightarrow p = \frac{2}{3}.$$

Q. 18. If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{a}| = 5$, then write

the value of $|\vec{b}|$. R&U [Foreign 2016]

Sol. Try Yourself Q. 19. Find λ_r , if

$$(2\hat{i}+6\hat{j}+14\hat{k})\times(\hat{i}-\lambda\hat{j}+7\hat{k})=0$$

R&U [All India 2010]

Sol. Try Yourself

Q. 20. Find the value of p_1

if
$$(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + p\hat{k}) = \vec{0}$$

R&U [All India 2009]

Sol. Try Yourself

Sol.

Commonly Made Error

• Some candidates make mistakes while calculating dot & cross product as vector $i \cdot i = 1$ and $i \times i = 0$ is right method but candidates like $i \times i = 1$ and $i \cdot i = 1$ 0 which is wrong.

 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \end{vmatrix}$

(2 marks each)

$$|2 -1 -1|$$

= $i(1 + 2) - j(-1 - 4) + k(-1 + 2)$
= $3i + 5j + k$ 1

Area of
$$|a \times b| = \sqrt{9 + 25 + 1} = \sqrt{35}$$
 sq. units **1**

Q. 3. Find
$$|\overrightarrow{a} \times \overrightarrow{b}|$$
 if $|\overrightarrow{a}| = 10$, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$.
RU

 $\rightarrow \rightarrow$

Sol. ::
$$\cos \theta = \frac{a \cdot b}{|a| |b|} = \frac{12}{10 \times 2} = \frac{3}{5}$$

 $\cos \theta = \frac{3}{5}$

Get More Learning Materials Here : **_ CLICK HERE** \gg

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5} \qquad \mathbf{1}$$
$$\sin \theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{a}| |\overrightarrow{b}|}$$
or
$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$$
or
$$|\overrightarrow{a} \times \overrightarrow{b}| = 10 \times 2 \times \frac{4}{5} = 16 \qquad \mathbf{1}$$

Q. 4. Using vectors, find the area of triangle ABC, with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).

R&U [Foreign 2017]

Sol.
$$\vec{AB} = \hat{i} - 3\hat{j} + \hat{k}, \ \vec{AC} = 3\hat{i} + 3\hat{j} - 4\hat{k}$$

 $Area of \Delta ABC = \frac{1}{2} |\vec{AB} \times \vec{AC}|$
 $= \frac{1}{2} \text{ magnitude of } \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix}$
 $= \frac{\sqrt{274}}{2} \text{ sq. units}$
[CBSE Marking Scheme 2017]

Answering Tip

- Learn the concept of area of triangle in terms of vector algebra.
- Q. 5. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then show that $(\vec{a} - \vec{d})$ is parallel to $(\vec{b} - \vec{c})$, it is being given that [Foreign 2016] [Delhi 2009] $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.

Sol. Given,

or

$$a \times b = c \times d \text{ and } a \times c = b \times a \times b - a \times c = c \times d - b \times d$$

or
$$\vec{a} \times (\vec{b} - \vec{c}) + (\vec{b} - \vec{c}) \times \vec{d} = \vec{0}$$
 1

d

or
$$\vec{a} \times (\vec{b} - \vec{c}) - \vec{d} \times (\vec{b} - \vec{c}) = \vec{0} \quad [\because \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}]$$

or $(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}$
or $(\vec{a} - \vec{d}) \parallel (\vec{b} - \vec{c})$ 1

[CBSE Marking Scheme 2009]

(4 marks each)

Long Answer Type Questions-I

Q. 1. The two adjacent sides of a parallelogram are $2\hat{i}-4\hat{j}-5\hat{k}$ and $2\hat{i}+2\hat{j}+3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram. R&U [O.D. Set I, II, III 2016]

 $= 2\hat{i} - 4\hat{j} - 5\hat{k}$

 $\overrightarrow{b} = 2\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$

 $\vec{a} + \vec{b} = 4\hat{i} - 2\hat{j} - 2\hat{k}$

Sol.

and

$$\frac{\overrightarrow{a} + \overrightarrow{b}}{|\overrightarrow{a} + \overrightarrow{b}|}$$

$$4\overrightarrow{i} - 2\overrightarrow{i} - 2\overrightarrow{i}$$

$$= \frac{4}{\sqrt{24}} \hat{i} - \frac{2}{\sqrt{24}} \hat{j} - \frac{2}{\sqrt{24}} \hat{k}$$
$$= \frac{2}{\sqrt{6}} \hat{i} - \frac{1}{\sqrt{6}} \hat{j} - \frac{1}{\sqrt{6}} \hat{k}$$

Unit vector parallel to $\vec{d_2} = \vec{b} - \vec{a}$ is

$$= \frac{\overrightarrow{b} - \overrightarrow{a}}{|\overrightarrow{b} - \overrightarrow{a}|} = \frac{6\overrightarrow{j} + 8\overrightarrow{k}}{\sqrt{36 + 64}}$$
$$= \frac{6}{10}\overrightarrow{j} + \frac{8}{10}\overrightarrow{k} = \frac{3}{5}\overrightarrow{j} + \frac{4}{5}\overrightarrow{k}$$
parallelogram $\frac{1}{2}|\overrightarrow{d_1} \times \overrightarrow{d_2}|$
$$\overrightarrow{d} \times \overrightarrow{d}_{-} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -2 & -2 \end{vmatrix}$$

8

0 6

396]

Get More Learning Materials Here : **_**

...

Area of

 $\frac{1}{2}$

$$= \hat{i}(-16+12) - \hat{j}(32-0) + \hat{k}(24-0)$$

$$= -4\hat{i} - 32\hat{j} + 24\hat{k}$$

$$|\vec{d_1} \times \vec{d_2}| = \sqrt{16+1024+576}$$

$$= \sqrt{1,616} \qquad \frac{1}{2}$$

∴ Area of parallelogram

$$= \frac{1}{2} |\vec{d_1} \times \vec{d_2}| \qquad \frac{1}{2}$$

$$= \frac{1}{2} \sqrt{1616}$$

$$= \frac{1}{2} \times 4\sqrt{101}$$

$$= 2\sqrt{101}$$

$$= 20.09 \text{ or } 20.1 \text{ so units} \qquad 1$$

[CBSE Marking Scheme 2016]

Q. 2. If $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ find $(\overrightarrow{r} \times \overrightarrow{i}) \cdot (\overrightarrow{r} \times \overrightarrow{j}) + xy$. R&U [Delhi, 2015]

$$= -xy + xy = 0$$
[CBSE Marking Scheme 2015]

Q. 3. If $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + \hat{k}$, $\overrightarrow{b} = -\hat{i} + \hat{k}$, $\overrightarrow{c} = 2\hat{j} - \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{b} + \overrightarrow{c}$.

R&U [Delhi Set I Comptt. 2014]

Sol.
$$\overrightarrow{a} + \overrightarrow{b} = \hat{i} - 3\hat{j} + 2\hat{k}; \ \overrightarrow{b} + \overrightarrow{c} = -\hat{i} + 2\hat{j}$$
 1
 $(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c})$

[397

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 2 & 0 \end{vmatrix} = -4\hat{i} + 2\hat{j} - \hat{k} \qquad \mathbf{1}^{1/2}$$

Area of parallelogram

S

$$= \frac{1}{2} \left| (\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c}) \right|$$
$$= \frac{\sqrt{21}}{2} \text{ sq. units} \qquad 1\frac{1}{2}$$

[CBSE Marking Scheme 2014]

Q. 4. Find the unit vector perpendicular to both the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$, where $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ and $\hat{b} = \hat{i} + 2\hat{j} + 3\hat{k}$. R&U [Foreign Set I, II, III 2014]

Sol.
$$\overrightarrow{a} + \overrightarrow{b} = \left(2\hat{i} + 3\hat{j} + 4\hat{k}\right),$$
 1

$$\overrightarrow{a} - \overrightarrow{b} = -\overrightarrow{j} - 2\overrightarrow{k} \qquad \frac{1}{2}$$

Let
$$\vec{c} = (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$$
 1

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix}$$
^{1/2}

r
$$\vec{c} = -2\hat{i} + 4\hat{j} - 2\hat{k}$$

r $\hat{c} = -\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$ 1

[CBSE Marking Scheme 2014]

 $+\hat{k}$

Q. 5. If
$$\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
 and $\overrightarrow{b} = \overrightarrow{j} - \overrightarrow{k}$, find a vector \overrightarrow{c} ,
such that $\overrightarrow{a \times c} = \overrightarrow{b}$ and $\overrightarrow{a \cdot c} = 3$.

A [Delhi Set II, 2013]

Sol. Let
$$\overrightarrow{c} = x\hat{i} + y\hat{j} + z\hat{k}$$

Given $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$

$$\vec{b} = \hat{j} - \hat{k}$$

According to the question,

$$\vec{a} \cdot \vec{c} = 3$$

or
$$(\hat{i} + \hat{j} + \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 3$$

or $x + y + z = 3$...(i)
and $\vec{a} \times \vec{c} = \vec{b}$

Get More Learning Materials Here :

CLICK HERE »

or
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \vec{b} = \hat{j} - \hat{k}$$
 1
or $(z-y)\hat{i} + (x-z)\hat{j} + (y-x)\hat{k} = \hat{j} - \hat{k}$
On equating the coefficients of like terms, we get
 $z-y=0$, or $y=z$...(ii)
 $x-z=1$...(iii)
and $y-x=-1$...(iv) 1
Solving eqns. (i), (ii), (iii) and (iv), we get
 $x = 5/3$
and $y = 2/3 = z$
Hence, $\vec{c} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$ 1
[CBSE Marking Scheme 2013]

Q. 6. Using vectors, find the area of the triangle whose vertices are A(1, 2, 3), B(2, − 1, 4) and C(4, 5, −1).
 R&U [Delhi 2017] [Delhi Set III, 2013] OR

Using vectors find the area of triangle ABC with vertices A(1, 2, 3) B(2, -1, 4) and C(4, 5, -1). R&U [Delhi 2017]

Sol. Given,

$$\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$$

 $\overrightarrow{OB} = 2\hat{i} - \hat{j} + 4\hat{k}$
and
 $\overrightarrow{OC} = 4\hat{i} + 5\hat{j} - \hat{k}$
Now,
 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$
 $= (2\hat{i} - \hat{j} + 4\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$
 $= \hat{i} - 3\hat{j} + \hat{k}$
 y_2
and
 $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$
 $= (4\hat{i} + 5\hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$
 $= 3\hat{i} + 3\hat{j} - 4\hat{k}$
 y_2
 \therefore The area of the given triangle
 $= \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$
1
Now,
 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix}$
 $= \hat{i} (12 - 3) + \hat{j} (3 + 4) + \hat{k} (3 + 9)$

 $=9\hat{i}+7\hat{j}+12\hat{k}$

Therefore,

Her

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(9)^2 + (7)^2 + (12)^2}$$
$$= \sqrt{81 + 49 + 144}$$
$$= \sqrt{274}$$
nce,
required area = $\frac{1}{2}\sqrt{274}$. unit² 1

[CBSE Marking Scheme 2013]

Q. 7. Find the unit vector perpendicular to the plane of $\triangle ABC$ whose vertices are A (3, -1, 2), B (1, -1, -3) and C (4, -3, 1) R&U [S.Q.P., 2013]

Sol. A vector
$$\perp_{r}$$
 to the plane of $\triangle ABC$,
 $\overrightarrow{OA} = 3\hat{i} - \hat{j} + 2\hat{k}$,
 $\overrightarrow{OB} = \hat{i} - \hat{j} - 3\hat{k}$,
 $\overrightarrow{OC} = 4\hat{i} - 3\hat{j} + \hat{k}$
 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -2\hat{i} + 0\hat{j} - 5\hat{k}$
 $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = 3\hat{i} - 2\hat{j} + 4\hat{k}$
Unit vector perpendicular to plane $= \frac{\overrightarrow{AB} \times \overrightarrow{BC}}{|\overrightarrow{AB} \times \overrightarrow{BC}|}$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} i & j & k \\ -2 & 0 & -5 \\ 3 & -2 & 4 \end{vmatrix} = -10 \hat{i} + 7 \hat{j} + 4 \hat{k}$$
 1

$$|AB \times BC| = \sqrt{100 + 49 + 16} = \sqrt{165}$$
 1
 \therefore Unit vector \perp_{e} to the plane

$$= \frac{1}{\sqrt{165}} (-10\hat{i} + 7\hat{j} + 4\hat{k}). \qquad 1$$

[CBSE Marking Scheme 2013]

Q. 8. Let $\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{p} \cdot \overrightarrow{c} = 18$. **R&U** [O.D. Set I, II, III, 2012]

Sol.
$$p$$
 is \perp to both a and b
or $\overrightarrow{p} = \lambda(\overrightarrow{a} \times \overrightarrow{b})$ 11/2

Now,
$$\overrightarrow{a \times b} = \begin{vmatrix} i & j & k \\ 1 & 4 & 2 \\ 3 & -2 & 7 \end{vmatrix}$$

398]

Get More Learning Materials Here :

1

VECTORS

$$= 32\hat{i} - \hat{j} - 14\hat{k}$$
1
$$\rightarrow \rightarrow$$
Given that $p \cdot c = 18$
or $\lambda(32\hat{i} - \hat{j} - 14\hat{k})(2\hat{i} - \hat{j} + 4\hat{k}) = 18$
1
or $\lambda(64 + 1 - 56) = 18$

$$\lambda = 2$$

$$\Rightarrow p = 64\hat{i} - 2\hat{j} - 28\hat{k}.$$
[CBSE Marking Scheme 2012]

Q.9. If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$, then find $|\vec{a} \times \vec{b}|$. R&U [Outside Delhi Set-II, 2015]

Sol.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \hat{i} (-2 - 15) - \hat{j} (-4 - 9) + \hat{k} (10 - 3)$$

$$|\vec{a} \times \vec{b}| = \sqrt{(-17)^2 + (13)^2 + (7)^2}$$

$$= \sqrt{289 + 169 + 49}$$

$$= \sqrt{507}$$

$$= \sqrt{3 \times 169}$$

$$|\vec{a} \times \vec{b}| = 13\sqrt{3}$$
[CBSE Marking Scheme 2015]

Q. 10. If
$$\overrightarrow{a} = 3 \overrightarrow{i} - \overrightarrow{j}$$
 and $\overrightarrow{b} = 2 \overrightarrow{i} + \overrightarrow{j} - 3 \overrightarrow{k}$, then express
 \overrightarrow{b} in the form of $\overrightarrow{b} = \overrightarrow{b_1} + \overrightarrow{b_2}$, where $\overrightarrow{b_1} | \overrightarrow{a}$ and
 $\overrightarrow{b_2}$ perpendicular to \overrightarrow{a} .

A [NCERT] [O.D. Set I, II, III, 2013]

Sol. Here

$$\overrightarrow{a} = 3\hat{i} - \hat{j}$$

and
 $\overrightarrow{b} = 2\hat{i} + \hat{j} - 3\hat{k}$
To express
 $\overrightarrow{b} = \vec{b_1} + \vec{b_2}$,
where
 $\vec{b_1} \parallel \overrightarrow{a}$ or $\vec{b_1} = \lambda \overrightarrow{a}$
 $\vec{b_1} = \lambda(3\hat{i} - \hat{j})$
Let
 $b_2 = x\hat{i} + y\hat{j} + z\hat{k}$
Now,
 $\vec{b_2} \perp \vec{a}$ or $\vec{b_2} \cdot \vec{a}$
 y_2

$$3x - y = 0 \qquad \dots(i)$$
Now, $\overrightarrow{b} = \overrightarrow{b_1} + \overrightarrow{b_2}$
or $2 \, \widehat{i} + \widehat{j} - 3 \, \widehat{k} = (3\lambda + x) \, \widehat{i} + (y - \lambda) \, j + z \, \widehat{k}$
Comparing the corresponding components
$$2 = 3\lambda + x \qquad \dots(ii) \, \frac{1}{2}$$
or $\lambda = y - 1 \qquad \dots(iii) \, \frac{1}{2}$
or $\lambda = y - 1 \qquad \dots(iii) \, \frac{1}{2}$
From eqn. (ii), $2 = 3(y - 1) + x$
or $2 = 3y - 3 + x$
or $x + 3y = 5 \qquad \dots(v) \, \frac{1}{2}$
Solving eqn. (i) & (v), $x = \frac{1}{2}, y = \frac{3}{2}$
 \therefore From eqn. (iii), $\lambda = \frac{1}{2}$
 $\therefore \qquad \overrightarrow{b_1} = \frac{3}{2} \, \widehat{i} - \frac{1}{2} \, \widehat{j} \qquad \frac{1}{2}$
and $\overrightarrow{b_2} = \frac{1}{2} \, \widehat{i} + \frac{3}{2} \, \widehat{j} - 3 \, \widehat{k} \qquad \frac{1}{2}$

[CBSE Marking Scheme 2013]

Commonly Made Error

• Generally students do not able to find the vector \vec{b} in the form of $\vec{b} + \vec{b_2}$, instead they add vector \vec{a} and \vec{b} which leads incorrect result.

Answering Tip

- Read and understand the question carefully to avoid such errors.
- Q. 11. Find a unit vector perpendicular to both of the vectors $3\overrightarrow{a} + 2\overrightarrow{b}$ and $3\overrightarrow{a} - 2\overrightarrow{b}$, where

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

R&U [Delhi Set I, II, III, Comptt. 2016]

Sol. Here
$$3\overrightarrow{a} + 2\overrightarrow{b} = 5\widehat{i} + 7\widehat{j} + 9\widehat{k}$$

and $3\overrightarrow{a} - 2\overrightarrow{b} = \widehat{i} - \widehat{j} - 3\widehat{k}$

Let \vec{c} be the vector perpendicular to both $(\vec{3a} + 2\vec{b}) \And (\vec{3a} - 2\vec{b}).$

Then,
$$\vec{c} = (3\vec{a} + 2\vec{b}) \times (3\vec{a} - 2\vec{b})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 7 & 9 \\ 1 & -1 & -3 \end{vmatrix}$$
$$= -12\hat{i} + 24\hat{j} - 12\hat{k} \qquad 2$$
[CBSE Marking Scheme 2016]

Get More Learning Materials Here :

Detailed Solution :		and a^{\rightarrow}	$a \rightarrow - c$	î î aî		4
Given $\stackrel{\rightarrow}{a} = \hat{i} + \hat{i}$	$\hat{j} + \hat{k}$	anu <i>3 a</i> -	-2b = 1	1 - j - 3k		1
$\vec{b} = \hat{i} + \hat{j}$	$2\hat{j} + 3\hat{k}$.:.	$\overrightarrow{c} = 0$	$(3\overrightarrow{a}+2\overrightarrow{b})$	$\times (3\vec{a}-2\vec{b})$	
$3\vec{a} = 3\hat{i} +$	$3\hat{j}+3\hat{k}$			î ĵ ĥ	ĉ	
and $2\vec{b} = 2\hat{i} + \hat{j}$	$4\hat{j}+6\hat{k}$ 1		=	579	9	
Let \vec{c} be the vector p	perpendicular to both $(3\vec{a}+2\vec{b})$			1 -1 -	3	
\rightarrow \rightarrow	-		= 1	$\hat{i}(-21+9)$	$-\hat{j}(-15-9)+\hat{i}(-5-7)$)
and $(3a - 2b)$.			= .	$-12\hat{i} + 24\hat{j}$	$-12\hat{k}$	1
$\therefore 3\overrightarrow{a} + 2\overrightarrow{b} = 5\widehat{i} + $	$\cdot 7\hat{j} + 9\hat{k}$ 1					

Q. 12. Show that the points *A*, *B*, *C* with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ respectively, are the vertices of a right-angled triangle, hence find the area of the triangle.

Sol.
$$\vec{AB} = -\hat{i} - 2\hat{j} - 6\hat{k}, \ \vec{BC} = 2\hat{i} - \hat{j} + \hat{k}, \ \vec{CA} = -\hat{i} + 3\hat{j} + 5\hat{k}$$

Since $\vec{AB}, \vec{BC}, \vec{CA}$ are not parallel vectors, and $\vec{AB} + \vec{BC} + \vec{CA} = \vec{0} \therefore A, B, C$ form a triangle
Also $\vec{BC} \cdot \vec{CA} = 0 \therefore A, B, C$ form a right triangle
Area of $\Delta = \frac{1}{2} |\vec{AB} \times \vec{BC}| = \frac{1}{2} \sqrt{210}$
[CBSE Marking Scheme 2017] 1

OP

$$\begin{array}{c}
\overline{5a} = 2i - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + k \\
\overline{5b} = 2i - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$$

400]

Regional www.studentbro.in

A Q. 13. If $\vec{a} = 2\hat{i} - \hat{j} - 2\hat{k}$ and $\vec{b} = 7\hat{i} + 2\hat{j} - 3\hat{k}$ then express \vec{b} in the form of $\vec{b} = \vec{b_1} + \vec{b_2}$, where $\vec{b_1}$ is

parallel to \vec{a} and $\vec{b_2}$ is perpendicular to \vec{a} .

R&U [O.D. 2017]

Sol.
$$\vec{b_1} || \vec{a}$$
 or let $\vec{b_1} = \lambda (2\hat{i} - \hat{j} - 2\hat{k})$ ^{1/2}
 $\vec{b_2} = \vec{b} - \vec{b_1}$
 $= (7\hat{i} + 2\hat{j} - 3\hat{k}) - (2\lambda\hat{i} - \lambda\hat{j} - 2\lambda\hat{k})$
 $\frac{1/2}{2}$
 $= (7 - 2\lambda)\hat{i} + (2 + \lambda)\hat{j} - (3 - 2\lambda)\hat{k}$ 1

 $\vec{b}_2 \perp \vec{a} \text{ or } 2(7-2\lambda) - 1(2+\lambda) + 2(3-2\lambda) = 0$ or $\lambda = 2$ $\therefore \qquad \vec{b}_1 = 4\hat{i} - 2\hat{j} - 4\hat{k}$

$$\vec{b_2} = 3\hat{i} + 4\hat{j} + \hat{k}$$
 ¹/₂

or
$$(7\hat{i}+2\hat{j}-3\hat{k}) = (4\hat{i}-2\hat{j}-4\hat{k})+(3\hat{i}+4\hat{j}+\hat{k})$$
 1
[CBSE Marking Scheme 2017]

Answering Tip

and

• Clarify the concept of scalar protection of vector thoroughly.

Q. 14. Given that vectors $\vec{a}, \vec{b}, \vec{c}$ form a triangle such that $\vec{a} = \vec{b} + \vec{c}$. Find p, q, r, s such that area of triangle is $5\sqrt{6}$ where $\vec{a} = p\hat{i} + q\hat{j} + r\hat{k}, \vec{b} = s\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$. K&A [O.D. Set II 2016]

Sol. $\vec{k} : \vec{b} \cdot \vec{c}$ - Hore $\vec{a} = p^{2} + q^{2} + i\vec{k}$ $\vec{b} = 5i \cdot a^{2} + i\vec{k}$ $\vec{c} = 2i \cdot j = 2i$ \vec{c} $\vec{c} = 2i \cdot j = 2i$ $\vec{c} = 2i$ $\vec{c$

CLICK HERE

401

 $\frac{1}{2}$

Get More Learning Materials Here : 💶 🍎

Q. 15. Find the area of a parallelogram ABCD whose side AB and the diagonal DB are given by the vectors

 $5\hat{i} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$ respectively.

1

1

Sol.
$$\vec{AD} = \vec{AB} - \vec{DB}$$

 $=3\hat{i}-2\hat{j}+4\hat{k}$

$$= |14\hat{i} + \hat{j} - 10\hat{k}|$$
 1

=
$$\sqrt{297}$$
 sq. units or $3\sqrt{33}$ sq. units **1**

Q. 16. Find the area of a parallelogram *ABCD* whose side *AB* and the diagonal *AC* are given by the vectors

 $3\hat{i} + \hat{j} + 4\hat{k}$ and $4\hat{i} + 5\hat{k}$ respectively.

[CBSE Marking Scheme 2017]

Q. 17. If $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = 4\hat{i} - 7\hat{j} + \hat{k}$, find a vector

 \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 6$.

K&U [Foreign 2017]

Sol. Let
$$\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}; \ \vec{a}\cdot\vec{c} = 6 \text{ or } 2x + y - z = 6$$

Now, $\vec{a}\times\vec{c} = \vec{b}$
or $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ x & y & z \end{vmatrix} = 4\hat{i} - 7\hat{j} + \hat{k}$ 1½
or $\hat{i}(z+y) - \hat{j}(2z+x) + \hat{k}(2y-x) = 4\hat{i} - 7\hat{j} + \hat{k}$
or $z + y = 4, 2z + x = 7, 2y - x = 1$ 1
Solving and getting $x = 3, y = 2, z = 2$

$$\vec{c} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
 1¹/₂

Q. 18. If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{i} - 4\hat{j} - 5\hat{k}$, then find a unit vector perpendicular to both of the

vectors $(\vec{a} - \vec{b})$ and $(\vec{c} - \vec{b})$. R&U [All India 2015]

Sol. Try Yourself

Q. 19. Find a unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and

$$\hat{b} = \hat{i} + 2\hat{j} + 3\hat{k}$$
. R&U [Foreign 2014]

- Sol. Try Yourself
- Q. 20. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$

and
$$\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$
. R&U [Delhi 2011]

- Sol. Try Yourself
- Q. 21. Using vectors, find the area of triangle with vertices *A*(1, 1, 2), *B*(2, 3, 5) and *C*(1, 5, 5). R&U [All India 2011]
- Sol. Try Yourself
- Q. 22. Using vectors, find the area of triangle with vertices A(2, 3, 5), B(3, 5, 8) and C(2, 7, 8).

R&U [Delhi 2010C]

🕀 www.studentbro.in

Sol. Try Yourself

CLICK HERE

Revision Notes

1. Scalar Triple Product

If \vec{a} , \vec{b} and \vec{c} are any three vectors, then the scalar product of $\vec{a} \times \vec{b}$ with \vec{c} is called scalar triple product of \vec{a} , \vec{b} and \vec{c} .

Thus, $(\vec{a} \times \vec{b})$. \vec{c} is called the scalar triple product of \vec{a} , \vec{b} and \vec{c} .

- Notation for scalar triple product : The scalar triple product of \vec{a}, \vec{b} and \vec{c} is denoted by $[\vec{a}, \vec{b}, \vec{c}]$ *i.e.*, $(\vec{a} \times \vec{b}), \vec{c} = [\vec{a}, \vec{b}, \vec{c}]$.
- Properties/Observations of Scalar Triple Product
 - $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$. *i.e.*, the position of dot and cross can be interchanged without change in the value of the scalar triple product (provided their cyclic order remains the same).
 - $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{c} \ \vec{a} \ \vec{b}]$, *i.e.*, the value of scalar triple product doesn't change when cyclic order of the vectors is maintained.

Also, $[\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{b} \ \vec{a} \ \vec{c}]; [\vec{b} \ \vec{c} \ \vec{a}] = -[\vec{b} \ \vec{a} \ \vec{c}]$. *i.e.*, the value of scalar triple product remains the same in magnitude but changes the sign when cyclic order of the vectors is altered.

- For any three vectors $\vec{a}, \vec{b}, \vec{c}$ and scalar λ , we have $[\lambda \vec{a} \vec{b} \vec{c}] = \lambda [\vec{a} \vec{b} \vec{c}]$.
- The value of scalar triple product is zero if any two of the three vectors are identical. That is, $\begin{bmatrix} \vec{a} & \vec{a} & \vec{c} \end{bmatrix} = 0 = \begin{bmatrix} \vec{a} & \vec{b} & \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{a} \end{bmatrix}$ etc.
- Solution of scalar triple product is zero if any two of the three vectors are parallel or collinear.
- Scalar triple product of \hat{i} , \hat{j} and \hat{k} is 1 (unity) *i.e.*, $[\hat{i} \ \hat{j} \ \hat{k}] = 1$
- If $[\vec{a}, \vec{b}, \vec{c}] = 0$, then the non-parallel and non-zero vectors \vec{a}, \vec{b} and \vec{c} are **coplanar**.

Know the Formulae

Volume of Parallelepiped

• If \vec{a}, \vec{b} and \vec{c} represent the three co-terminus edges of a parallelepiped, then its volume can be obtained by : $[\vec{a}, \vec{b}, \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c} \cdot i \cdot e$,

 $(\vec{a} \times \vec{b})$. \vec{c} = Base area of Parallelepiped × Height of Parallelepiped on this base

Note :

• If for any three vectors \vec{a} , \vec{b} and \vec{c} , we have $[\vec{a} \ \vec{b} \ \vec{c}] = 0$, then volume of parallelepiped with the co-terminus edges as \vec{a} , b and \vec{c} , is zero. This is possible only if the vectors \vec{a} , \vec{b} and \vec{c} are co-planar.

CLICK HERE

🕀 www.studentbro.in

Get More Learning Materials Here :

 $\overrightarrow{AB} = -4\hat{i} - 6\hat{j} - 2\hat{k}$ Sol. $\overrightarrow{AC} = -\hat{i} + 4\hat{j} + 3\hat{k},$ $\overrightarrow{AD} = -8\hat{i} - \hat{j} + 3\hat{k}$ **1**½ and For 4 points to be coplanar, $\begin{vmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD} \end{vmatrix} = 0$ $\begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$ = 0i.e., $1\frac{1}{2}$ = -4(12 + 3) + 6(-3 + 24) - 2(1 + 32)= -60 + 126 - 66 = 0, which is true Hence, points are coplanar. 1 [CBSE Marking Scheme 2016] Alternative Method : If four points A, B, C, D are coplanar, then vector \vec{AB}, \vec{AC} and \vec{AD} will be coplanar and so $|\stackrel{\rightarrow}{AB}\stackrel{\rightarrow}{AC}\stackrel{\rightarrow}{AD}|=0$ A = (4, 5, 1)B = (0, -1, -1)C = (3, 9, 4)D = (-4, 4, 4)By considering O = (0, 0, 0) as initial point $\overrightarrow{OA} = 4\hat{i} + 5\hat{j} + \hat{k}$ $\vec{OB} = -\hat{j} - \hat{k},$ $\vec{OC} = 3\hat{i} + 9\hat{j} + 4\hat{k}$ $\stackrel{\rightarrow}{OD} = -4\hat{i} + 4\hat{j} + 4\hat{k}$ and $\frac{1}{2}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ *.*.. $O_{\neq} -\hat{j} - \hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$ $= -4\hat{i} - 6\hat{j} - 2\hat{k}$ $\frac{1}{2}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$ $= 3\hat{i} + 9\hat{j} + 4\hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$ $= -\hat{i}+4\hat{j}+3\hat{k}$ $\frac{1}{2}$ $\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$ and $= -4\hat{i} + 4\hat{j} + 4\hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$ $= -8\hat{i}-\hat{j}+3\hat{k}$ $\frac{1}{2}$ Now,

 $\therefore \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \text{ are coplanar and these three vectors are co-initial vectors. So, points A, B, C, D are coplanar. 1
O. 3. Prove that$

$$\begin{bmatrix} \vec{a} & \vec{b} + \vec{c} & \vec{d} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix}.$$

A [O.D. Set I, II, III Comptt. 2015]

Sol. Taking
LHS =
$$\vec{a} \cdot (\vec{b} + \vec{c}) \times \vec{d}$$
 1 + 1
= $\vec{a} \cdot (\vec{b} \times \vec{d}) + (\vec{c} \times \vec{d})$ 1
= $\vec{a} \cdot (\vec{b} \times \vec{d}) + \vec{a} \cdot (\vec{c} \times \vec{d})$ 1
= $\vec{a} \cdot (\vec{b} \times \vec{d}) + \vec{a} \cdot (\vec{c} \times \vec{d})$ 1
= $[\vec{a} \ \vec{b} \ \vec{d}] + [\vec{a} \ \vec{c} \ \vec{d}]$
[CBSE Marking Scheme 2015]
PD Q. 4. If the vectors \vec{a}, \vec{b} and \vec{c} are coplanar, prove
that the vectors \vec{a}, \vec{b} and \vec{c} are coplanar, prove
that the vectors $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are also
coplanar.
[R&U] [Delhi Set I Comptt. 2013]
[Foreign Set I, II, III, 2014] [Delhi Set I I Comptt. 2013]
[Foreign Set I, II, III, 2014] [Delhi Set I, II, III, 2016]
Sol. Here, $(\vec{a} + \vec{b}), (\vec{b} + \vec{c}), (\vec{c} + \vec{a})$ are coplanar, 1
 $\therefore (\vec{a} + \vec{b}) \cdot \{(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})\} = 0$ 1
or $(\vec{a} + \vec{b}) \cdot \{(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})\} = 0$ 1
or $\vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} (\vec{c} \times \vec{a})$
 $+ \vec{b} (\vec{c} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) = 0$
 $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$
 $\therefore \vec{a}, \vec{b}, \vec{c}$ are coplanar.
Similarly converse part can also be proved.
[CBSE Marking Scheme 2014]

Q. 5. Find the value of λ , if the points with position vectors $3\hat{i}-2\hat{j}-\hat{k},2\hat{i}+3\hat{j}-4\hat{k},-\hat{i}+\hat{j}+2\hat{k}$ and $4\hat{i}+5\hat{j}+\lambda\hat{k}$ are coplanar. **F&U** [S.Q.P. 2013]

Sol. Let the points be *A* (3, – 2, – 1), *B* (2, 3, – 4), *C* (– 1, 1, 2) and *D* (4, 5, λ)

$$\overrightarrow{AB} \xrightarrow{AC} \overrightarrow{AD} = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$$

= -4(12 + 3) + 6(-3 + 24) + (-2)(1 + 32)
= -60 + 126 - 66
= 0

Get More Learning Materials Here :

CLICK HERE

1

$$\overrightarrow{AB}$$
 = (Position vector of B)

– (Position vector of A)

So

 $\frac{1}{2}$

 $\frac{1}{2}$

1

1

$$\overrightarrow{AB} = -\overrightarrow{i} + 5\overrightarrow{j} - 3\overrightarrow{k},$$

Similarly

 $\overrightarrow{AC} = -4\overrightarrow{i} + 3\overrightarrow{j} + 3\overrightarrow{k}$

:..

$$\overrightarrow{AD} = \widehat{i} + 7 \, \widehat{j} + (\lambda + 1) \, \widehat{k} \qquad 1\frac{1}{2}$$

A, B, C, D are coplanar if
$$[AB \ AC \ AD] = 0$$
 ¹/₂

$$\begin{bmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD} \end{bmatrix} = \begin{bmatrix} -1 & 5 & -3 \\ -4 & 3 & 3 \\ 1 & 7 & \lambda + 1 \end{bmatrix} = 0 \qquad \frac{1}{2}$$

 $\therefore 1(15+9) - 7(-3-12) + (\lambda + 1)(-3+20) = 0 \mathbf{1}$ 24 + 105 + 17 λ + 17 = 0

or
$$\lambda = -\frac{146}{17}$$

Commonly Made Error

• Some candidates fail to apply condition of coplanarity.

Answering Tip

and

...

• Scalar triple product and its applications need to be practiced with the help of practical examples.

Q. 6. If
$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ and
 $\vec{c} = 3\hat{i} + 4\hat{j} - \hat{k}$, then find
 $\vec{a} \cdot (\vec{b} \times \vec{c})$ and $(\vec{a} \times \vec{b}) \cdot \vec{c}$. Is,
 $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$?

Sol.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 2 & -3 \\ 2 & 4 & 1 \end{vmatrix}$$

$$= 2(-2+12) + 3(-1+9) + 4(4-6)$$
$$= 20 + 24 - 8$$

$$= 36$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{c} \cdot (\vec{a} \times \vec{b})$$

$$= \begin{vmatrix} 3 & 4 & -1 \\ 2 & -3 & 4 \\ 1 & 2 & -3 \end{vmatrix}$$

$$= 3(9-8) - 4(-6-4) - 1(4+3)$$

= 3 + 40 - 7 = 36

[CBSE Marking Scheme 2013]

 $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$.

Q. 7. If $\vec{p} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{q} = \hat{i} - 2\hat{j} + \hat{k}$, find a vector of magnitude $5\sqrt{3}$ units perpendicular to the vector \vec{q} and coplanar with vectors \vec{p} and \vec{q} .

R&U (SQP 2018-19)

DI. Let
$$\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$$
 be the required vector.
Since, $\vec{r} \perp \vec{q}$
therefore, $1a - 2b + 1c = 0$...(1) **1**
Also, \vec{p}, \vec{q} and \vec{r} are coplanar.
∴ $\begin{bmatrix} \vec{p} \neq \vec{r} \end{bmatrix} = 0$
 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ a & b & c \end{vmatrix} = 0 \Rightarrow a - c = 0$...(2) **1**
Solving equation (1) and (2)
 $\frac{a}{2-0} = \frac{b}{1+1} = \frac{c}{0+2}$
 $\Rightarrow \qquad \frac{a}{2} = \frac{b}{2} = \frac{c}{2}$
i.e., $\frac{a}{1} = \frac{b}{1} = \frac{c}{1}$
∴ $\vec{r} = 1\hat{i} + 1\hat{j} + 1\hat{k}$
 $|\vec{r}| = \sqrt{3}$
∴ Unit vector $\hat{r} = \frac{\vec{r}}{|\vec{r}|} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ **1**

$$\therefore \text{ Required vector} = 5\sqrt{3}\hat{r} = 5\left(\hat{i}+\hat{j}+\hat{k}\right) \qquad 1$$

[CBSE Marking Scheme 2018-19]

Q. 8. Find x such that the four points A(4, 1, 2), B(5, x, 6), C(5, 1, -1) and D(7, 4, 0) are coplanar.

$$\vec{AB} \cdot \left(\vec{BC} \times \vec{CD} \right) = 0$$
 1

triple product is 0.

>>

So A

CLICK HERE

$$\vec{AB} = 1\hat{i} + (x-1)\hat{j} + 4\hat{k}$$
$$\vec{BC} = 0\hat{i} + (1-x)\hat{j} - 7\hat{k}$$
$$\vec{CD} = 2\hat{i} + 3\hat{j} + \hat{k}$$
11/2

Get More Learning Materials Here : 📕

VECTORS

$$\vec{AB}.(\vec{BC} \times \vec{CD}) = \begin{vmatrix} 1 & x-1 & 4 \\ 0 & 1-x & -7 \\ 2 & 3 & 1 \end{vmatrix} = 0$$

expanding by R_1
 $1(1-x+21) - (x-1) 14 + 4(2(x-1)) = 0$
 $22 - x - 14x + 14 + 8x - 8 = 0$
 $-7x = -28$
 $x = 4$
[CBSE Marking Scheme 2015]

AI Q. 9. If the vector $\vec{p} = a\hat{i} + \hat{j} + \hat{k}$, $\vec{q} = \hat{i} + b\hat{j} + \hat{k}$ and

 $\overrightarrow{r} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{ck}$ are coplanar, then for *a*, *b*, *c* \neq 1, then show that.

$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

R&U [Outside Delhi Set I, II, III, Comptt. 2016] [SQP Dec. 2016-17]

Sol. Since the vector
$$\vec{p}$$
, \vec{q} and \vec{r} are coplanar,

$$\therefore \qquad [\vec{p}, \vec{q}, \vec{r}] = 0 \qquad 1$$
i.e.,
$$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$
and
$$\begin{vmatrix} a & 1 & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$
and
$$\begin{vmatrix} R_2 \rightarrow R_2 - R_1 \\ R_3 \rightarrow R_3 - R_1 \end{pmatrix} = 0$$
for
$$\begin{vmatrix} a & 1 & 1 \\ 1 - a & b - 1 & 0 \\ 1 - a & 0 & c - 1 \end{vmatrix} = 0$$
Or $a(b-1)(c-1) - 1(1-a)(c-1) - 1(1-a)(b-1) = 0$
i.e., $a(1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b) = 0$
1
Dividing both the sides by $(1-a)(1-b)(1-c)$, we get
$$\frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

i.e.,
$$-1 + \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

i.e.,
$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

[CBSE Marking Scheme 2016]

Commonly Made Error

i.

• Some candidates do mistake while doing scalar triple product. $\begin{bmatrix} \rightarrow \rightarrow \rightarrow \end{bmatrix} \qquad \rightarrow \begin{bmatrix} \rightarrow & \rightarrow \end{bmatrix}$

1

• The right product is
$$\begin{bmatrix} a & b & c \end{bmatrix} = \vec{a} \cdot \begin{bmatrix} b \times c \end{bmatrix}$$

• but student do mistake $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} \end{bmatrix} \times \vec{c}$ or
 $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{a} \times \vec{c} \end{bmatrix} \times \vec{b}$.

Q. 10. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$, and hence show that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0.$ R&U [SQP 2017-18] $\vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times \vec{0}$ đ. 1

or
$$\vec{a} \times \vec{b} + \vec{a} \times \vec{c} = \vec{0}$$
 ¹/₂

or
$$\vec{a} \times \vec{b} = \vec{c} \times \vec{a}$$
 ¹/₂

$$\vec{b} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{b} \times \vec{0}$$
 ¹/₂

$$\vec{b} \times \vec{c} = \vec{a} \times \vec{b}$$
 ¹/₂

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$
 ¹/₂

$$\begin{bmatrix} a & b & c \end{bmatrix} = a \cdot (b \times c) = c \cdot (a \times b) = 0$$

[As the scalar triple product of three vectors is zero if any two of them are equal.] 1/2 [CBSE Marking Scheme 2017-18]

Q. 11. Find the value of λ , if four points with position vectors $3\hat{i} + 6\hat{j} + 9\hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$ and $4\hat{i} + 6\hat{j} + \lambda\hat{k}$ are coplanar. R&U [O.D. Set I 2017]

or

:.

Sol. Given points,
$$A$$
, B , C , D are coplanar, if the vectors \vec{AB} , \vec{AC} and \vec{AD} are coplanar, *i.e.*,
 $\vec{AB} = -2\hat{i} - 4\hat{j} - 6\hat{k}$, $\vec{AC} = -\hat{i} - 3\hat{j} - 8\hat{k}$, $\vec{AD} = \hat{i} + (\lambda - 9)\hat{k}$ are coplanar
i.e.,
 $\begin{vmatrix} -2 & -4 & -6 \\ -1 & -3 & -8 \\ 1 & 0 & \lambda - 9 \end{vmatrix} = 0$
or
 $-2[-3\lambda + 27] + 4[-\lambda + 17] - 6(3) = 0$
or
 $\lambda = 2.$ [CBSE Marking Scheme 2017] ¹/₂

CLICK HERE

»

Get More Learning Materials Here : 📕

[407

1

- (ii) $c_2 = -1, c_3 = 1$ $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = c_2 - c_3 = -2 \neq 0$
 - or No value of c_1 can make $\vec{a}, \vec{b}, \vec{c}$ coplanar 1 [CBSE Marking Scheme 2017]

Q. 14. If four points A, B, C and D with position vectors $4\hat{i} + 3\hat{j} + 3\hat{k}$, $5\hat{i} + x\hat{j} + 7\hat{k}$, $5\hat{i} + 3\hat{j}$ and

 $7\hat{i} + 6\hat{j} + \hat{k}$ respectively are coplanar, then find the value of *x*. R&U [Delhi Comptt. 2017]

Sol.

$$\vec{AB} = \hat{i} + (x-3)\hat{j} + 4\hat{k}$$

$$\vec{AC} = \hat{i} - 3\hat{k}$$

$$\vec{AD} = 3\hat{i} + 3\hat{j} - 2\hat{k}$$
11/2

As A, B, C and D are coplanar

$$\vec{AB} \cdot (\vec{AC} \times \vec{AD}) = 0$$

i.e.,
$$\begin{vmatrix} 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0$$
 1

$$\theta - (x - 3) (7) + 12 = 0$$

which gives
 $x = 6$

[CBSE Marking Scheme 2017]

R&U [O.D. 2017]

Sol. Points *A*, *B*, *C* and *D* are coplanar, then the vectors AB, AC, and AD must be coplanar.

$$\vec{AB} = \hat{i} + (x - 2)\hat{j} + 4\hat{k}; \vec{AC} = \hat{i} - 3\hat{k},$$
$$\vec{AD} = 3\hat{i} + 3\hat{j} - 2\hat{k}$$
$$1\frac{1}{2}$$

i.e.,
$$\begin{vmatrix} 1 & -2 & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0 \qquad 1$$

1(9) - (x - 2)(7) + 4(3) = 0 or x = 5. or $1\frac{1}{2}$ [CBSE Marking Scheme 2017]

Q.13. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then

- (i) Let $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \vec{a}, \vec{b} and \vec{c} coplanar.
- (ii) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a}, \vec{b} and \vec{c} coplanar. R&U [Delhi 2017]

Sol.
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = c_2 - c_3 \quad \mathbf{1}$$

(i) $c_1 = 1, c_2 = 2$
 $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 2 - c_3 \quad \mathbf{1}$

🕀 www.studentbro.in

Get More Learning Materials Here :

CLICK HERE

Long Answer Type Questio	(6 marks each)
1. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are unit vectors such that	Q. 2. If \hat{a} and \hat{b} are unit vectors inclined an angle θ ,
$\overrightarrow{a \cdot b} = \overrightarrow{a \cdot c} = 0$ and the angle between \overrightarrow{b} and \overrightarrow{c}	then prove that $\tan \frac{\theta}{2} = \frac{ \vec{a} - \vec{b} }{ \vec{a} + \vec{b} }$.
is $\frac{\pi}{6}$, then prove that :	Sol. Given $ \vec{a} = \vec{b} = 1$ & θ is angle between \vec{a} and \vec{b}
(i) $\overrightarrow{a} = \pm 2(\overrightarrow{b} \times \overrightarrow{c})$	$ \begin{pmatrix} \vec{a} - \vec{b} \\ \vec{a} - \vec{b} \end{pmatrix} \begin{pmatrix} \vec{a} - \vec{b} \\ \vec{a} - \vec{b} \end{pmatrix} = \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} $
(ii) $\begin{bmatrix} a + b & b + c & c + a \end{bmatrix} = \pm 1$. A [S.Q.P. 2015-16]	$= \vec{a} ^2 - 2\vec{a}\vec{b} + \vec{b} ^2$
I. (i) As given	$= 1 - 2\vec{a}.\vec{b} + 1$ 1
$\overrightarrow{a \cdot b} = 0, \ \overrightarrow{a \cdot c} = 0 = \overrightarrow{a} \perp \text{both } \overrightarrow{b} \text{ and } \overrightarrow{c}$	$ \vec{a} - \vec{b} ^2 = 2 - 2\vec{a}.\vec{b}$
(as \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-zero vectors) 1	$= 2 - 2 a b \cos\theta$
or $\overrightarrow{a} \parallel (\overrightarrow{b} \times \overrightarrow{c})$	$ \vec{a} - \vec{b} ^2 = 2(1 - \cos\theta) = 2\left(2\sin^2\frac{\theta}{2}\right) 1$
Let $\overrightarrow{a} = \lambda (\overrightarrow{b} \times \overrightarrow{c}),$	$ \vec{a} - \vec{b} ^2 = 4\sec^2 \frac{\theta}{2}$
then $ \overrightarrow{a} = \lambda (\overrightarrow{b} \times \overrightarrow{c}) $	$2\sin\frac{\theta}{2} = \vec{a} - \vec{b} $
or $\frac{ \vec{a} }{ \vec{a} } = \lambda $	$\sin \frac{\theta}{2} = \frac{1}{2} \vec{a} - \vec{b} \qquad 1$
$ (b \times c) $	Now $\left(\vec{a} + \vec{b}\right) \left(\vec{a} + \vec{b}\right) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}$
or $ \lambda = \frac{1}{\sin\frac{\pi}{6}} = 2$	$ \vec{a} + \vec{b} ^2 = \vec{a} ^2 + 2.\vec{a}.\vec{b} + \vec{b} $
$\therefore \qquad \lambda = \pm 2$	$ \vec{a} + \vec{b} ^2 = 1 + 2.\vec{a}.\vec{b} + 1$ ¹ / ₂
$\therefore \qquad \stackrel{\rightarrow}{a} = \pm 2(\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c})$	$ \vec{a} + \vec{b} ^2 = 2 + 2 \vec{a} \vec{b} \cos\theta$
$\begin{array}{c} & & \\ \rightarrow & \rightarrow \\ \end{array} \rightarrow & \rightarrow \\ \end{array} $ Hence proved. 2	$ \vec{a} + \vec{b} ^2 = 2(1 + \cos\theta)$
(ii) Now $[u+u] = b+c$ $(c+u]$ $- [(a+b) \times (b+c)] \cdot (c+a)$	$ \vec{a} + \vec{b} ^2 = 4\cos^2\frac{\theta}{2}$ ^{1/2}
$= (a \times b) \times (b \times c) + (b \times c) = a$	$ \vec{a} + \vec{b} ^2 = 2\cos\frac{\theta}{2}$
(As the scalar triple product = 0, if any two vectors are equal)	$\cos \frac{\theta}{2} = \frac{1}{2} \left \hat{a} + \hat{b} \right $
$ \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{c} \cdot (\overrightarrow{b} \times \overrightarrow{c}) $	$\tan \frac{\theta}{2} = \frac{ \vec{a} - \vec{b} }{ \vec{a} + \vec{b} }$ Hence Proved. 2
$\rightarrow \rightarrow \rightarrow$ - 2 $a(h \times c)$ 1 + 1/	Q. 3. If with reference to right handed system of
$= 2\pi(0\times C) \qquad 1 \neq \frac{1}{2}$	mutually perpendicular unit vectors \hat{i}, \hat{j} and \hat{k}
$= 2 a \left(\frac{\pm a}{2} \right)$	and $\vec{\alpha} = 3\hat{i} - \hat{j}, \vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express in
$= \pm 1 \qquad \frac{1}{2}$ Hence proved.	the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$
[CBSE Marking Scheme 2015]	and $ec{eta_2}$ is perpendicular to $ec{lpha}$.

r www.studentbro.in

Get More Learning Materials Here : 📕

Get More Learning Materials Here : 📕

